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Motivated by the observation that the ab~ove approaches are primarily linear and that
biological systems, which process information in a highly nonlinear, collective, and
frequently iterative manner, are very adept,, at carrying out recognition, classification,
association , and optimization tasks, we elected to investigate the capabilities of collective
nonlinear processing in target identification.,&This report describes our research findings in
this area. Our approach was also influenced by the observation that biological pattern
recognition systems, e.g. in the cortex, did not develop in isolation but in synergism with
sensory organs and their feature forming networks. This means that development of
artificial pattern and target recognition systems may benefit from considering the data
acquisition, representation, identification, and cognition aspects of the. problem
simultaneously. This unified approach to the problem of neuromorphic automated target
i-.:ognition (ATR), has produced, as described in this report the following findings: (a)
The differential range-profile of an isolated target (e.g. aerospace targets) provides an
excellent feature vector for use with adaptive learning networks, (b) Near perfect and
robust classification of test targets is demonstrated in a multilayer error backpropagation
networks using realistic range-profile data generated in our anechoic chamber microwave
scattering measurement facility, (c) Despite this excellent performance, such networks lack
cognitive ability. This means when the network is presented with a feature vector that does
not belong to any one of the targets used in training it, it can classify it as one of the targets
it learned. The network has no inherent ability to tell, on its own (i.e. without the help of
auxilliary gear acting as novelty detector) that the test feature vector belongs to a novel
target. Lack of cognition is a serious limitation of networks meant to operate in complex
uncontrolled environment. (d) Most neural networks for pattern recognition being dealt
with today lack cognitive ability. Preliminary findings of our research motivate us to make
the following hypothesis in this regard: To be cognitive, a neural network must be
nonlinear and dynamical and able to manifest bifurcation. This means it should be able to
carry out computations with more than one type of attractor in its phase-space and to be
able to switch between them depending on whether the sensory input is familiar or novel.
Our future research will be aimed at validating this hypothesis. Demonstrating its
practicality in an engineering sense can have far reaching implications. For example, it
could enable a combat aircraft, not only detect with its radar another at 200 nautical miles,
as is common today, but also to identify it cognitively without having to form an image.
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The views, opinions, and/or findings contained in this
report are those of the author(s) and should not be
construed as an official Department of the Army position,
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1. STATEMENT OF THE PROBLEM STUDIED

Radar targets and other microwave scattering objects can be identified by
either forming images with sufficient resolution to be recognized by the human
observer or by forming representations (signatures or feature vectors) of the target
and using them in automated machine recognition. Tomographic Microwave
diversity imaging techniques that combine angular (aspect), spectral (wavelength),
and polarization degrees of freedom can produce images of the 3-D distribution of
scattering centers of a target with near optical resolution. Despite this capability
there are practical circumstances when the size and/or cost of the physical aperture
needed to furnish the required angular degrees of freedom is too high, or when the
time delay involved in synthesizing such an aperture through relative motion
between the radar system and the object being imaged (as for example, -in SAR and
ISAR) is not acceptable. One is faced then with the problem of having to identify the
target from a limited amount of information that is insufficient to produce an
identifiable image.

A number of approaches have been studied and explored in the past to
circumvent this problem [1]-[4]. Generally these have met with limited success.
They include super-resolution by analytic continuation and singularity expansion
methods. The reason for the limited success of these approaches is that they are
primarily linear.

Humans, and other animals, recognize objects in their environment with
great ease. This is essential for their survival. They do this also with robustness, i.e.
even when objects are partially obscured or when the data they convey to sensory
organs are corrupted by noise and the signal levels involved vary over very wide
dynamic range. Moreover the recognition task is easily achieved even when the
object is not isolated but exists in the prsence of clutter (background). These
functional capabilities are attributed to the collective nonlinear, nature of signal
processing in the central nervous system. Biological neural nets and their models
furnish accordingly an intriguing paradigm that is worth emulating in artificial
man made systems. Such systems can be of great utility in patern recognition,
solution of optimization problems and inverse scattering problems and in
associative storage and recall of information (associative memory).

The goal of research described in this report is study of the neural approach to
signal processing and assessment of its utility in target recognition and image
understanding. In particular robust target recognition from sketchy (partial and/or
noisy) information is of primary interest. The approach adopted in our
investigation is to study several interrelated facets of the problem. These include:
(a) Microwave data acquisition and image understanding, (b) data representation
which involves formation of signature vectors or feature vectors that can help
achieve robust distortion invariant recognition. By distortion invariance we mean
recognizing the target irrespective of aspect, distance, or location within the field of



view (rotation, size, and shift invariance in the pattern recognition literature). By
robust we mean recognition from sketchy information over a wide dynamic-range
of signal levels and interrogating feature vectors, (c) assess and demonstrate the
capabilities of neural computation in the solution of selected inverse scattering
problems (image reconstruction and object recognition), (d) study of analog
hardware implementation of neural networks and learning machines employing
photonic (optoelectronic, electron-optical, electro-optical) technology.

Extensive efforts in data acquisition and microwave image understanding
and image reconstruction employing diversity information and range-profile
r-epresentations (see Appendices I to V) were carried out to evaluate and establish
the viability of range-profiles as signature or feature vectors suitable for use not only
in microwave image reconstruction, but also as will be seen below, in automated
neuromorphic target classification and cognition.

We elected to study neuromorphic radar target recognition of aerospace
targets because such targets are isolated and clutter is minimal. This makes the
problem less difficult than, for example, object recognition by the visual system in
natural scenes where isolating the object from background comprises a complex task
apparently carried out by the eye-brain system routinely through a mechanism of
attention focusing whose exact details are not fully known. We believe, progress
with the aerospace target recognition problem can be helpful in the problem of 3-D
object rcognition in natural scenes. Another reason for our choice of the radar target
recognition of aerospace targets is the ability to generate realistic scattering data and
signatures of scale-models of targe's of interest in our anechoic chamber microwave
scattering facility. The facility provides semi-automated measurement of the
frequency response of test objects over any frequency (spectral) window in the (2-
26.5)GHz frequency range for any target aspect and any desired state of polarization
of the transmitter and the receiver. (See Appendix IV for detail.) The range-profile
representation alluded to earlier is the real-part of the Fourier transfrom of the
measured frequency response of the target after removal of the range-phase. A
target is characterized by either its frequency response (measured frequency response
corrected for range-phase due to propagation between the phase center of the
transmitting/receiving antenna and the scattering phase-center of the target) for all
aspect angles of interest or by the corresponding range-profiles. In our work we refer
to the range-profiles variably as echo, signature vector or feature vector. When
sufficiently wide spectral windows are used, in data acquisition, the echo or range-
profile echo from the target is an approximation of the impulse response of the
target produced by impulsive plane wave illumination.



2. SUMMARY OF THE MOST IMPORTANT RESULTS

Our initial efforts in assessing the capabilities of neurocomputing in
microwave scatterer identification made use of a fully connected neural network
operating as heteroassociative memory. (See Appendix IV.) The connection
weights between neuron in the network were computed off-line and set in the
network. The network consisting of 32x32 binary neurons was implemented in
software. The network was formed from sinogram representations of three test
targets: scale models of a B-52, AWAC, and Space Shuttle. The sinogram
representation is basically a binarized cartesian plot of range-profiles versus aspect
angle for a fixed elevation angle of the target. When tested with partial versions of a
sinogram, the network was able to classify the target to which the data belonged
correctly. Partial data, down to a fraction of nearly 10% of the full sinogram
representation was found able to produce correct classification of the three targets.
This network demonstrated clearly the distinctive features of neural processing i.e.
collective, and nonlinear, signal processing as compared to conventional signal
processing: the functions of data storage, processing, and object labeling are
performed by the same elements of the network. This is unlike conventional signal
processing where these functions are normally carried out by separate elements of
the system. This means that, when the network is mplemented in hardware, the
three functions listed above, wold be carried out by the same hardware. The
network required in its operation that the aspect angles at which the test data were
collected be known. Although it is possible to obtain this information, it dictates in
practice the use of auxilliary tracking radars and additional signal preprocessing to
determine the target orientation relative to the radar line-of-sight at which the
range profile data comprising the test data was acquired. This complication can be
avoided if one can design a network capable of classifying a target from few echos or
from a single echo or "look" (single range-profile) without having to specify at what
aspect angle of the target the echo occurs. This capability is highly desirable and is
important from a practical viewpoint.

To investigate the feasibility of robust radar target recognition from a single
look we examined next the performance of a multilayered feedforward error back-
propagation network. The network we set up was an outcome of an investigtion we
carried out of a learning network for extrapolation and target identification. This
network (see Appendix VI), consisted of three layers: an input layer of 101 complex
neurons representing the complex frequency response of the target, a hidden layer of
101 real neur-ns, and an output layer of N=2 binary neurons capable of presenting
2 N= 4 target labels which can classify up to four targets. The connection weights
between the input layer and the hidden layer are those of the discrete Fourier
transform kernel and are fixed. The connection weights between the hidden layer
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and the output layer are adaptive and are determined by an error driven supervised
learning algorithm. The network was trained on the (6-17)GHz frequency response
data of three test objects: scale models of a B-52, a Boeing 707 and a space shuttle. We
found this net can learn the frequency responses, or corresponding range-profiles, of
the three test targets constituting the training set. Following training, the net is able
to classify any one of the frequency responses of an object presented to it by
associating it with the correct object label formed by neurons of the output layer.
When a two-out-of-three majority vote was adopted in keeping score of the
network's performance as frequency response echos were presented to it, the score
was found to be perfect even when only 35% of the training set of each target was
employed in training the network. This constitutes good generalization and means
that a network need not be trained with very large numbers of feature vectors before
it can capture .he underlining structure of the target. It is worh noting, that unlike
the preceeding network this network does not require aspect information in its
performance. In addition it was found that the network has excellent robustness. In
that the excellent performance cited above can be maintained even at very low
signal-to-noise ratio and over very wide dynamic range of the frequency response
data. (See Appendix VI for detail.) The network achieves, despite its simplicity (it is
essentially a one layer perceptron network), our stated goal namely that of robust
distortion invariant classification of training targets.

At this stage of our research we thought that we had realized the task we set
out to achieve. We were quickly disappointed. Despite of the excellent performance
capabilities cited above, neither this network, nor the network described before, are
of any practical use. Both networks lack cognitive ability. When presented with
novel data from a target the net has not been trained upon, i.e. has not seen before,
it could, because of the lac _f cognition, classify it erroneously as one of the targets
it has learned. This lack of cognition is a serious problem facing practical
applications of neural network that need to operate in complex uncontrolled
environments. This point requires some clarification. One can train a network for
example to recognize handwritten zip code numbers. The trained network is useful
because it is only meant to recognize zip code numbers. No one is going to use it to
recognize the Japanese alphabet for example. It is designed to operate in a controlled
environment. This is not true for a neural net designed to recognize radar targets
because the environment in which the net is intended to operate is not controlled.
Targets other than those the network is trained to recognize can occur in its
environment. There are two possible solutions to this problem that come to mind.
One is to train the network with every target it could conceivably encounter in its
environment. This is not practical, because even if details can be worked out, it
would result in very large networks of unacceptable size. The second solution, and
this is often invoked by workers in the field when they realize that the network they
developed is not cognitive, is to incorporate a "novelty filter." This consists of using
auxilliary gear that can measure other attributes of the target such as size, speed,
altitude, etc. and use these attributes to decide whether the target encountered is of
interest or not, i.e., whether the output of the neural network engaged is to be taken
seriously or not. The disadvantage of this approach is increased complexity and cost
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of the data acquisition system. Biological neural networks possess inherent
cognitive abilities. There is no doubt that multisensory modalities; which can be
viewed as providing something akin to novelty filtering, are involved in networks
of the brain to reduce ambiguities. There must be however more to it than that.
We have started recently a study of the issue and are finding the results obtained so
far most intriguing. We believe this study will lead to ways of designing a new
generation of neural networks with inherent cognitive ability. Before discussing
our findings in this regard we will briefly summarize the findings of our
investigation in data acquisition and representation.

The range-profile of a target for a given aspect resembles the impulsive plane
wave illumination of the target for that aspect provided the spectral window used in
data acquisition is sufficiently wide. A general criterion for selecting the spectral
width Af is 6 = c/2Af where 8 is the desired range resolution on the target and c is the

velocity of light. In general terms, 8 corresponds to the size of the finest detail on
the target (and hence in its image) needed to distinguish it from other targets.
Because the form of the echo (temporal impulse response) produced by an
impulsive plane wave sweeping the target is independent of range to the target (it
only depends on aspect), range-profile data ensures, when used as feature vector in a
neural based radar target recognition scheme, that performance is independent of
range. Invariance with target location within the field of view is obtained then by
aiming the T/R antenna of the acquiring radar at the target at all times by precise
tracking. Invariance with aspect is achieved then by training a suitable neural
network with the normalized range-profile data collected over the solid angle of
encounter of every target the network is required to learn. Angular sampling
considerations applied to a target of extent L dictate that the number of range-

profiles needed to characterize the target is given by N =- /8n where 80 t (CX/L)2

with 1 being the mean wavelength used in data acquisition and n is the solid angle
of encounter. Values of N for typical aerospace targets and practical spectral
windows can therefore be quite large. The generalization ability of trainable neural
networks discussed earlier means that the network need not be trained with every
one of its N range-profile but only with a fraction of them which we call the training
set. This helps reduce training time. The training set can be selected randomly or
uniformly over the solid angle of encounter.

The ultimate goal of our data acquisition and representation effort is to show
that range-profile data collected in a controlled anechoic chamber environment
employing scale models of targets of interest can, by paying careful attention to
scaling issues based on the principle of electromagnetic similitude [51, be used to
recognize the actual size targets by conventional broad-band coherent radar systems

in the field. When the conductivity a of scale models and actual targets is very high
(Y -4 -), electromagnetic similitude considerations show that scaling is satisfied
when data acquisition with a scale model that is n times smaller than the actual
target is carried out over a frequency range that is n times greater than f-equenc)
range of the actual radar used in the field.



We return now to describing our findings so far regarding introducing
cognition to neural networks. The majority of neural networks described in the
literature, compute by forming point attractors in phase-space with prescribed basins
of attraction. We have recently described an error-driven algorithm for forming
string attractors in phase-space of networks with synchronously updated neurons
and proposed its use in target recognition, [6] (see also Appendix VII). A string
attractor is basically a point attractor with filamentary, rather than "volumetric",
basin of attraction. Synchronicity and its role in feature binding is receiving
increased attention in the literature [71-[91, but the question of how to achieve feature
binding in practice has thus far received little attention. The learning rule gien in
[6] for forming a string attractor, i.e. storing a sequence of vectors in a network,
applies also to forming a periodic attractor by closing the string on itself. The
characteristics of periodic and string attractors, revealed so far in our work are: (a)
High storage capacity M N where M is the number of vectors stored in the sequence
and N is the number of neurons in the network. For example, M=40 bipolar binary
vectors were stored in a network of N=32 bipolar binary neurons in less than 50
training cycles. (b) Arbitrary (i.e. highly correlated and nonorthogonal) vectors can
be stored in sequence. (c) Initiated from any member of the stored sequence, a string
attractor network cycles through all subsequent vectors and terminates on the last
stored vector in the string, while a periodic attractor network would cycle repeatedly
through all vectors stored which 4- equivalent to producing a periodic spatio-
temporal oscillation of states of the neuron population. (d) Highly isolated periodic
and string attractors are formed with the degree of isolation controlled by the
threshold level of neurons. By this we mean, for relatively high neuron thresholds,
initiators (initiating state vectors) with Hamming distance dH>1 from any of the
stored vectors do not trigger the periodic attractor but cause the network instead to
bifurcate and converge to a limit point which is usually a ground state or one close
to it. (e) Several nonintersecting periodic or string attractors may be stored in the
same network. (f) The learning rule in [61 for storing sequences scales well with
network size, for instance, networks with 32, 64 and 128 neurons were tested arid all
showed similar behavior. (g) Sequence of arbitrary unipolar binary vectors can
also be stored provided the vectors are not too sparse.

Periodic attractor networks with the above-listed properties, and particularly
(d), offer a possible mechanism for cognition in that when the vectors stored are
feature vectors representing an object in its different manifestations, and the
initiating vector is one of the stored feature vectors, or is close to any one of them in
the Hamming sense (e.g. dH<l), the periodic attractor will be triggered. Now if a
label vector, identifying the object, was imbedded earlier on in the periodic attractor
when it was formed, it would also be triggered once every period signaling thereby
that the input is one of the feature vectors stored. Because of the high degree of
isolation of a periodic attractor achieved by proper choice of neuron threshold an
initiating input vector with Hamming distance dH>1 would not trigger the

sequence or the imbedded label. Instead, the network bifurcates and switches its



operation to computing with point attractors whereby it proceeds to converge
rapidly to a fixed ground state, where all neurons are in their low binary state, or
one close to it and this would serve as an indication within the network that the
input is not familiar providing thus cognition.

Feature vectors of more than one object can be stored in separate non-
intersecting periodic attractors containing imbedded labels in the same network.
Attractors and labels are triggered in such a network only if the initiator is of
Hamming distance dH<1 from one of the vectors stored in an attractor. Novel
initiators will not trigger any of the labels and this provides such a network with
ability to finely distinguish if certain feature vectors are present in its environment.

Despite its potential usefulness for feature binding, periodic attractor
networks are void of generalization because of their high isolation. A slight change
in a feature vector that triggers the attractor renders it ineffective causing the
network to bifurcate. This means that a recognized object can stop being recognized
if its feature vectors change to the slightest. This suggests that periodic attractor
networks need to be used with additional networks that can furnish the
generalization capabilities needed in order to provide the composite network with
cognition and robustness at the same time. Presently, we are seeking methods for
imparting prescribed domains of attraction for each vector stored in the periodic
attractor. This would provide the periodic attractor with controlled basin of
attraction. Initial results suggest that this can be achieved by combining periodic
attractor networks with arrays of feedforward feature extracting networks.
Advantages of this hierarchial approach to network construction we are noting at
this very preliminary stage, are modularity and potential reduction of learning time
even in large networks because of segmentation. All this appears to be achieved
while enjoying the good robustness and noise immunity of feedforward learning
networks. Although such feedforward networks provide robustness and noise
immunity, they lack cognition. Cognition is provided by the periodic attractor. This
approach could provide us, for the first time, with a way for combining distinct
neural network or neural modules in such a way as to achieve higher level
processing such as cognition.

Finally we report on our findings in the area of photonic or optoelectronic
implementation of neural networks. Interest in artificial neural networks
implemented in analog hardware rather than digital software stems primarily from
their potential speed advantage. The photonic approach is motivated by the desire
to combine the best attributes of optics, namely parallelism and massive
interconnectivity, with the best attributes of electronics, decision making
(nonlinearity) and gain. During the period of this report we designed constructed
and studied the performance of what we believe to b the first stochastic photonic
learning machine (see Appendix VIII for detail). Learning in this machine is
stochastic taking place in a self-organizing tri-layered opto-electronic neural net with
plastic connectivity weights that are formed in a programmable nonvolatile spatial
light modulator. The net, which can also be called a Boltzmann Learning Machine,



learns by adapting its connectivity weights in accordance to environmental inputs.
Learning is driven by error signals derived from state-vector correlation matrices
accumulated at the end of fast annealing bursts that are induced by controlled optical
injection of noise into the network. Operation of the machine is made possible by
two important developments in our work: Fast annealing by optically induced
noisy thresholding, and stochastic learning with binary weights. Results obtained
with a 24 neuron prototype partitioned into three layers with 8 input, 8 hidden, and
8 output neurons show that the machine can learn, with a score of about 95%, to
associate two 8-bit vector pairs in 10-60 minutes with relatively slow (60 msec
response time) neurons. Shifting to neurons with 1 jisec response time for example,
could reduce the learning time by roughly 104 times. Slow neurons were
deliberately used to make it easier to visually examine and record the changing state
vector of the network as it operates which is displayed with an array of LEDs.
Increasing the number of hidden neurons in this machine from 8 to 16 is shown, by
numerical simulations, to increase the learning score to 100%. The spatial light
modulator (SLM) used in constructing the machine had to be of the nonvolatile
variety. The one such SLM available to us at the time, (and still is) was the
magneto-optic SLM. A scheme for enhancing the frame rate of this SLM from
video rate to 1000 frames/sec to speed-up learning was developed [101.
Unfortunately, the pixels of this device have binary (on-off) transmission only. This
restricted the connection weights of the neurons in the machine to binary values.
All adaptive learning algorithms require analog weights. To overcome this
limitation we developed a scheme for Boltzmann machine learning with binary
weights (see Appendix VIII). Although effective in learning, the number of
associations the network could learn with the binary weights scheme is less than
what it can learn with analog weights. This underlines the importance of
developing programmable nonvolatile spatial light modulators for use in photonic
learning machines.
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the spectral and angular windows for the data are usually restricted
by practical constraints. Therefore, the microwave image of a me-
tallic object might be different from its geometrical shape.

In this paper we A ill investigate microwave images of metallic
objects employ ing micro\sa\c diversity imaging from a new point
of view. based on the understanding of the interconnection between
the object scattering mechanisms, the data acquisition system, and
the image reconstruction algorithm utilized in image retrieval. The
image reconstruction algorithm can be either the Fourier transform
method or the back-projection method, and these two methods yield
equivalent results ( 11. [41. However, the back-projection method
provides more physical insight into the image formation process
15] Basically. the mage is formed in three steps: I) measure the

mdPrediction in Nicrosae scattered field over a specified spectral window and angular win-
dow; 2) obtain the range profile, which is the inverse FT of the

Diversity Imaging range-corrected frequency response, at each aspect angle; and 3)
HSUEH-JYH LI, NABIL H. FARHAT, AN D YUHSYEN SHEN back-project the range profile of each aspect angle onto an image

plane to obtain the image, We will interpret and predict the micro-
wave image based on the above three.steps.

Ahstrac-The microwave image of a metallic object is interpreted A different scattering mechanism might produce a different ap-

front a it- point of vie%. based on the understanding of the inercon- pearance in its microwavc image. In this paper we will only deal

fri~oit hvios-vn the scattering mechanisms thedata aof tiiron s with a special scattering nw,hansm,-edge diffraction For those
lln han r the recontrtin melhoithmrm th s uderstading ,,, objects consisting of conducting plates. edge diffractions are dom-

tern, ald th iage reconstruction algorithm. From this undertanding inant contributors to the scattered field when the receiver is not in
weir dataclleodinterspe nd angular microweimages. reconrucd the specular direction of any one of the visible plates comprising

Sp ,-dJ,.from data collected over speciied~and angular windows. The connec- the object. To a first order approximation the field scattered from

tion between a special scattering mechanism, edge diffraction, and its th e object s cade consiere asea s ation o

reconstructed image is established. The microwave image of an edge contributions from each a isile' plate, and the scattered field of

will he two bright points whose locations correspond to the end points a plate can he rosidered a' a summation of the diffracted field

of the edge if the normal aspect angle is not included in the angular from each e insidble ed ge Therfuore, diffraction from an edge is

,indoA: oth-r'ise a line joining the two end points and reprvvriting the basic building block fgr the scattering problem of those objects

the edge wilt appear in the image. Experimental images 0 a irihedral

reflector reconstructed from data collected over different angular win- consisting of conducting platcs.

and predic- In Section 11 the scattered field from an edge with finite length
don. support this new approach to image interpretation will be reviewed, the physical properties of its range profile willlion. be explained, and the image formation for an edge with finite length

will be discussed. A trihedral reflector is an object consisting of
I. INTRODUCTION conducting plates. Experimental images of a trihedral reflector re-

Microwavc diversity imaging is an imaging technique that ex- constructed from data collected over different angular " indows will
ploo, po,,ihlc degrees of freedom, including spectral. angular. and be demonstrated and interpreted in Section III.
pola:rization diversities ill. In this imaging system, an object is
seated on a rotating pedestal and is illuminated by a plane wave. 11. SCATTERED FIELD. RANGE PROFILE, AND IMAGE

For each aspect angle a set of pulses at different frequencies is FORMATION OF A FINITE EDGE
transmitted and its echoes are received. The object is then rotated
and the measurement is repeated to obtain the multiaspect stepped Consider a conducting plate placed on a rotating pedestal as il-

frequenc) response of the scattering object. lustrated in Fig. I. Points P, and P, are two vertices of the plate

In the microwave regimes. the physical optics (POi ipproxi- and the line PP. form, an edge of the plate. In the laboratory
mat in is usuili. used to model the scattered held of 1i o.,,lucting coordinate s.stam. delinc the :-axis in the direction of the rota-
bjcIt Ii v s,, -hown that a three-dimensional (3-D) Fk ,ic:; trons- tional axis. and the t-axis in the direction of the line of sight At

torni (F T relationship exists between the shape of a perle, ;! con- the starting angle the polar coordinates of the end points P, and P,

ducting obect and its backscattered far field under the PO approx- are (r,, 0. o I) and I r,, 0:. o,), respectively. As the plate is rctated
imation [21. However, the PO approximation is inadequate for with an angle oi the coordinates of P, and P, become (r,. 0,, +

scattering problems of a complex shaped conducting object. At o) and (r.0,. 0, + 0 ). respectively. The differential ranges of
high-frequenci edge diffractions, multiple reflections,. 'reeping these two end points at rotation angle o are then r, sin 0 cos ( o

ave,,. and surtace traveling waves are also important -i:icring -) and r. sin 0- co, c cii. respectivels Ii is noted that the

rnee.n,mI, S i A jicid scattered from these scatterill :, ,ha- dependence t the diflcrenti,,l ranges of the end points on the ro-

nlisr', cannot b,. treated by the PO approximation Ada'na lv . Ia,',, .dti ,: ;, 1MUWiiddl
Next we detine an edge-hed coordinate for the plate. Let the

z'-axis be in the direction of the edge PP,, and the . '-axi he nor-
.tnu,,:rpi rc,.cted January t t. 1988. revised Jul, 29. 198S Ihi, oork ral to the edge and lying on the plate surface. The corresponding

was supponed hs grants from the Arm. Research Otice. the S,crnt,!. Re- inclination angle of the transmitter receiver to the edge-fixed co-
sear,:h of Air. RCA. and GE Corporation ordinate system is 6'( o = 0' ). As the plate is rotated through an

H -J Li is with the Deparment of' Electrical Enc'neerini: 'i . Ta. angle c. the correspond t n t si angle for the edge-h xel o-
w ant n .croits. 1 aipe . Taiwan. Republi. i China srdinaic gl 't.en, c men, ci It is, ntled that I Id, ni fi nl\ a

N i 'l . , , .ah The Miiore Sh '', fl:, -i i 1:- ,.,: N . :I

..-. I ' -' ania. Philadelphia Pl I'4ii(Q lunitiun itt c hi,: aO, tu ,i n w i teli otieniation of the plaitc and
, .-,, the Jet Propulsion L hohirator.. Cahlr ,, - .1, i the edge

Tef ':''c,. P-..jcna. CA 91109 The ditra,:ted field o a i.cdgc with finite length for arbitrar
IEL L Log Number 8823954 incident and ditlracted angles hais been treated 161. ,here the con-

0196-2892 h9 01iiC-0098S01.00 1989 IEEE
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I-

" y ~ucdtt df 2 -t

Z _J

Santenna
Fig I. Geometry and coordinates of an edge in the laboratory coordinate/ l.

system and edge-fixed coordinate system.

cept c' equivalent electrical current and equivalent magnetic cur- h

rent has been applied. Denote the equivalent electric current and , /

equivalent magnetic current on the edge as I(z' ) and M(:' ). The /
expressions of I and M for the backscattering case can be found in//

[61. They are functions of the inclination angle and the azimuth
angle, and are in, ersely proportional to the wavenumber k.

The backscatted field of an edge with finite length L expre,,.,ed
in the edge-fixcd coordinate system can be written by [6]

idaho e -  
. sin (kL cos 6' ) (c) (d)

4= -- i 8'()L J.L cos 0' I Fig. 2. Image formation of an edge. (a) Sketch of the range pmofiles of an

edge at various aspect angles. (b) lmplementation of the back-projection.
EC = 0 ,._ i e '-(0)_ , sin (kL cos e' ) (2) Sketches of the images after back-projection (c) including and (d) with-

=4i- r -i 'MO kL cos 6' out the aspect angle such that the edge is normal to the line ot silght.

where I 0 ) and M( 0 ) are the equivalent electric current and equis -

alent magnetic current at:z = 0. and i ts the characteristic. nmpcd- pass through the cotresponding end point as in the case of corn-
ance of the free space. puter-aided tomography (CAT]). intensifying the brightness of the

At a specific aspect the range profile is obtained by FT the range- end points. However, when the aspect such that 0'( 0) = 90 ° is
corrected frequency response. After range correction (i.e./- the tirst within the angular window (i.e.. the aspect at which the incident
two terms on the right of (I) and (2) being removed), the range- wave is normal to the edge is contained within the angular win-
corre.ted field can be further simplified to dow). the back-projection due to this range profile will be a single

ejALc02 - e-mo e. bright line.

s' =,in 8'I(0) L € 3) The above explanation is illu,,tratcd in Fig. 2. At rotation angle
2jkL cos 6' 0 the edge is noral to the line ot sight (i.e., 6' (a0,) 900 ). and

et ' e ejt, the range profile for that aspect has a single peak with large am-
i' =r sin e'M(O) L 2.Lcs8 4 ( plitude. When plate is rotated to another angle 0,, the range

2JkL os 6profile has two pecaks located at d,' and d," with smaller amplitudes

The FT of (3; and (4) with respect to 2k over a finite bandwidJth (see Fig. 2(a)). The implementatton of back-projection is illus-
will give two peaks. located at range about ±" ( L/2 ) cos 6'. s.,hich trated in Fig. 2(b). The sketches of the image after back-projection
are at the differential ranges of the end points of the edge. s. ith including and excluding the specular aspect are shown in Fig 2ic)
amplitude pronortional to I(0) or M(0. and I ,!'L cos 6' ) it ,c. : and Cd. respectively The ahove discussi on,, and illustration, in-
9fP At the rotatlion angle 0 such that 6' (0) = 900. thc ritnee dicate that the micnrvae im~age ol an dge willbe twobright points'
profile gives, a ,,ingle peak with strong magnitude because thc tIi' vhose locations, correspond to ihc end points, of the edge it the
end points of the edge have the same differential ranges, and ,tIthe normal aspect angle ,, not includ,.d in the angular ss inoay . other-
points, on ti . edges, are in equidistance to the ohse~ation point v~ ,e a line .otnng the two poits, and representing the edge v, il

After rcalizig the aspect dependence of the range protile iii the appear in the image
edge. we can then form and predict the image of an edge b,, the
technique of back-projection 141. 151. 171. After back-projection. Ill. MR(o.)A,,. lIMAt|s o -\ TRiHE-DRAL REi-LI-cIOR
the contributions, of a specific range profile to the rcconstrutd To serif,, the ness interprettionl approach. the rnicrowasec tn-
image ' .1) he t ss o parallel lines oriented in the directitor o? h,.' age,, 0) a t rihcdratl reflctlor re :,miniriicted from data .collejeId os er
c'ause t he. iral.c o) each end point '.ers.us, the rotation ane'......... .. riou. ,angu lir ssinlo's. atrc. ,.j . mini ,ruetd hcliiss

,ioldal. ,all haL k-projection lines for v arious rtaton ang Ic- q., The georoeir iml ,a irihedid re c tot.h and lie tiaging arr.ingc-
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Fig. 4. Photo image and microwave images of a trihedral reflector a;

3600 Microwave projective image reconstructed from data collected over an-
gular window from o = 00 to 220'. (b) Projective photo image. Micro-
wave projective images reconstructed from data collected over (c) an-

20 gular window I = 00 to 400 1; id1 angular window 2( o 
= 

40' to220'
160

°  800); (e) angular window 3 ((b = 80' to 120' ) If) angular vtndo\, 4
10 120' to 160' ); (g) angular window 5 (o = 160' to 220 ). and

1200 

0

800 e(h) angular window 6 (0 = 220' to 360')

400

00
-72 -36 0 36 72 frequency response of the trihedral reflector is shown as a central

differential range in cm slice of Fourier data in Fig. 3(b). The radial distance of a given
ic) sample in this plot represents the frequency while the polar angle

Fig 3. Geomietr imaging arrangement. fringe pattern, and sinogram of represents the rotation angle o. The brightness of each point is

a irihdrl reetor a;geomrand n arrangementngpatternand sofra io- proportional to the amplitude of the frequency response. The rangea trihedral reflec.tor (ai Geometr% and imainng arrangement of a Irn-

hedrl reflector (b) Real pan of the range-corrected frequency response profiles for all aspect angles are represented as a sinogram. The
o the trihedral ic) Sinogram of the trihedral reflector sinogram representation has been used in CAT 171 and is applied

here to represent the range profiles of various aspect angles. It is a

2-D intensity varied display with the abscissa of the differential

ment are shoAn in Fit. 3al The transutittini and receiving anten- range. the ordinate of the aspect angle. and the intensity or bright-

nas have opposite senses of circular polarization 101 equal fre- ness proportional to the amplitude of the range profile. The sino-

quenc steps covering the 6- 16.5 GHz range were used to obtain gram of the tribedral reflector is shown in Fig 3(c). The bottom

the trequenc,, response of the trihedral reflector The object is ro- line represents the range profile of the first aspect 0 ' = A ,hile

tated clockwise 360 The real par of the range-corrected complex the top line represents the range profile of the last aspect angle
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The magnitude of the range profile is proportional to the brightness interconnection between the scattering mechanisms. the data ac-
of the display and the sinogram is displayed in linear scale. The quisition system. and the image reconstruction algonthm. From
dynamic display range has been suitably chosen so that weak sip- this understanding we can interpret and predict the microwave im-
nals will not be ovemdden. Examining the sinogram one can find age reconstructed from data collected over specified spectral and
that bright points are present in certain aspect angles. Locations of angular windows. Experimental results support this new approach
these bright points correspond to the differential ranges of the "vis- to image interpretation. Although the scattering mechanism treated
ible" edges that are normal to the line of sight. in this paper is confined to the edge diffraction, the same approach

The image reconstructed through an angular window covenng can also be applied to establish the connection between the other
from o = 00 to 2200 is shown in Fig. 4(a). It is seen that the image scattenni mechanisms and their reconstructed images 15]. Suc-
is a projective image projected onto the plane normal to the rota- cessful interpretation and prediction of the microwave image are
tional axis. The optical projective image is also shown in Fig. 4(b) fundamental to research in several areas. including target identiti-
for companson. To verify our new image interpretation approach cation, classification. radar cross-section reduction. and image dis-
stated in the previous section. we divide the whole angular window tortion [8].
into six subwindows and reconstruct the image from each subwin- REFERENCES

dow. The resultant images are shown in Fig. 4(c)-(h). Examining
the resultant images. one can find that only those edges that are III N. H. Farhat. C. L. Werner. and T. H. Chu. "Prospect for three-
normal to the line of sight within the specified angular window dimensional projective and tomograpnic imaging radar networks." Ra-

appear in the image. The brightness of the end points of the edges dio Sci.. vol. 19. no. 5. pp. 1347-1355. 1984.

has been intensified. It is noted that no edges are normal to the line 121 N. Bojarski. 'Inverse scattering." Nav. Air S~st. Command. War-
minister. PA. Final Rep. NOOO-19-73-C-0312F. Feb. 1974

of sight in angular window 3. Accordingly, no edges are present [3] G. T. Ruck, D. E. Barnck. W. D. Stuart. and C. K. Krichbaum. Radar
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some aspects in this window as can be seen from the fnnge pattern International Commission on Optics. %ol, ICO-13. pp. o2-63. 1984.
(Fig. 31b)) and the sinogram (Fig. 3(c)). Multiple reflection usually 151 H. J. Li. N. H. Farhat. Y. Shen. and C L. Werner. 'Image under-
distorts the image because the range profile does not reflect the standing and interpretation in microwave diersitt imaging. IEEE
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Range Profiles and Images of a Loaded Straight
Wire

HSUEH-JYH LI, MEMBER, IEEE, NABIL H. FARHAT, FELLOW, IEEE, AND YUHSYEN SHEN, MEMBER, IEEE

Abstract-The range profiles and images of a straight wire without and scattering mechanism for the backscattered field of a long thin
with lumped impedance loading are discussed and demonsirated. The wire with near end-on incidence [81. Therefore, it will be of
scattering mechanisms of a straight wire are qualitativel. anal) id. Plots, interest to examine the ,appciarce of the image for objects
of range profiles at different aspect angles show that surface ri,.eting with this special scattering mechanism.
waves are important scattering mechanisms of a straight Aire. The
presence of traveling waves makes ringlike artifacts appear in the In some applications it is desirable to distort the image of a
reconstructed Images. It is found that lumped impedance loading can target so that it cannot be recognized by radar [9]. If the wire is
effectively distort the range profiles and microwave images of a wire loaded with impedance, the in.pedance discontinuities on the
scatterer. In addition, randomly varied reactive loading can generate wire surface will cause extra radiation. The effect of impe-
random peaks in the range profiles. dance loading on micro, ave images has not yet been reported.

Monochromatic imaging of a monopole antenna has been
I. INTRODUCTION studied holographically by Iizuka and Gregoria [10], who was

T HE PROPERTIES of the field scattered from a scatterer interested in visualizing resonance effects. However, what we
loaded with lumped impedance have been extensively are interested in is a wire scatterer rather than an antenna and a

studied [11-131. Several interesting phenomena can then be frequency diversity image instead of a monochromatic image.
deduced from the variation of the scattered fields. Fixed linear In this paper we will use the moment method to numerically
impedance loading can change the natural frequenie\ of a calculate the field scattered from a loaded straight wire
target [41. Time-varying loading can make the receier unable scatterer and derixe it.. range profile and microwave image
to phase lock to the frequency of the incident wave and can from the calculated scattered fields. A qualitative analysis of
shift the apparent frequency of the scattered field to provide a the scattering mechanisms of a straight wire will be given first.
false Doppler shift [3]. It can also spread the spectrum of the This analysis is then examined via plots of the numerical and
scattered field to decrease the energy within the bandwidth of a experimental range profiles, which are then compared with the
receiver (5]. The sensitivity of these phenomena to impedance experimental results. The effect of impedance on the range
loading has been discussed in [5]. profiles and the rcconstructed images will be presented and

In this paper, we will discuss two other propcrtic,, range discussed.
profiles and images of a straight wire without and with lumped 1. SCATTERING MUHASISMS OF A STRAIGHT WIRE
impedance loading. The range profile of a scatterer at an
aspect is defined as the Fourier transform (FT) of the Radiation can originate from several places on an arbitrarily
frequency response of the scattered field at that aspect. Range shaped wire object. These include the excitation region, an
profiles can give useful insight into the scattering mechinisms impedance load, a change in radius, a sharp bend, a smooth
of a scatterer. After the range profiles are obtained. an image curve, and an open end 131. Consider a straight \Aire
can then be formed by back projecting the comp;c\ rmnge illuminated by an mipulsi~c plane wave with angle of
profiles at various aspects into the imaging plane [6]. incidence 0 as shown in Fig. I. In this scattering arrangement
Microwave images of conducting objects have been inter- the only places which cause radiation are the end points of the
preted satisfactorily through the understanding of the scatter- wire. The pulse traveling in free space impinges on the upper
ing mechanisms of the object and the procedures of the image end point first. Part of the incident energy is then reradiated,
reconstruction algorithm [7]. Different scattering mcchini,,nm and the remaining energ continues to travel along the "sire.
can produce different apr,-arances of microwae ni,.¢ It This traveling pulse '.%ill bc partl reradiated when it rea:hes
was reported that a surta,.e traveling wave is the dlmin,int the lower end and partfl rctlc. ted upward along the wire. This

process of radiation and reflection continues until the pulse

Manuscript recei'.. December 4. 1987. re ised March 29. i9h, This dies out. The original pulse propagating in free space hits the
work was supported in part by grants frem the Army Research Oific. uh,: Air lower end point some lime atter it impinges on the upper end
Force Office of Scientific Research. RCA. and GE Corporaion point. The process of radiation, reflection, and guided

H. 1. Li is with the Department of Electrical Engineering. Natin i 4n o p
University. Taipei. Taiwan. Republic of China propagation along the %k ire % ill then occur just as in the case of

N H Farhat is with The Moore Sch.,I of Elcrica .,.... n,: the upper end point. [)tlercit , ave motions resulting from
Univerity of Pennsylvania. Philadelphia. PA 19104 multple interactions hctc'm the ends of the w;ire are

Y Shen is with the let Propulsion Uaboratnr) , Calitorni., o!'. in gfe l ec s
Technology, Pasadena. CA 91109. indicated in Fig. 1. The dfferential path length1,, Which is the

IEEE Log Number 8824119. ith wave motion path relative to the path length when the

0018-926X/89 010l0-0094$01.00 © 1989 IEEE
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Fig. 2. Numerical range profiles of straight w'ire for angles of incidenc. equal to (a) 30', (by 45'. (Ci 60'. (dI 75*.

impulsive illumination hits the center point of the wire, is as equal to 30', 45' , 60, and 750 . The location of the peak
follows: marked with i corresponds to the differential path length of the

, = - h cos 0 - h cos 0 - - 2h cos e ith wave motion shown in Fig. 1. If we carefully examine the
range profiles shown in Fig. 2. we can find that the peaks

I ' = h cos 0 - h cos 0 = 2h cos 0 marked with I and I depart more trom the center as the angle
1 decreases, while the peaks marked with 2 and 2' and 4 and

= - h cos 0 - 2h . h cos 0 = 2h 4' remain at the same position and thus are independent of the
,' = h cos 0 - 2h - h cos O = 2h angle of incidence. Those peaks marked with 3 move toward

2, while those marked with 3' move toward 4' as 0 increases.
1,= -h cos 0 + 4h- h cos 0 = 4h- 2h cos 0 These observations verify the analysis stated in Section II

A real thin rod with length 12" and diameter 1/8" is used as
1; = h cos 0 - 4h + h cos 0 = 4h + 2h cos 0 a test object to experimentally verify' the numerical results.

The measurement arrangement is shown in Fig. 3. The wire
1,= h cos E--6h+h cos 0=6h

scatterer is mounted on a rotating pedestal controlled by a
/, = h cos 0 -4- 6h - h cos 0 = 6h. microcomputer. A set of step frequencies are transmitted, and

the scattered field is received. After that, the object is rotated
Ill. RANGE PROFILES AND RFCONSTRUCTED IMAGES and the measurement is repeated. The frequency coverage is

To examine the previous analysis, we use the moment from 6 to 16.5 GHz. The polarization status of the transmitting
method to theoretically calculate the field scattered from a and receiving antennas are righthand circularly polarized and
straight wire scatterer Irom which we derive the range profiles lefthand circularly polarized, respectively. A bistatic angle of
and reconstruct the image. The piecewise sinusoidal Galerkin 160 exists between these two antennas. The range profiles of
method is used [ 11]. Let the ratio of the length to the radius be this thin rod at several aspects are shown in Fig. 4. In this
100. the length of wire be 30 cm, and the frequency coverage bistatic case the differential path lengths of path 2 and path 2'
be from 6 to 16 GHz. In other words, the length in terms of are not equal. This fact accounts for the discrepancy between
wavelength ranges from 6 to 16 The polarization of the the experimental and numerical range profiles.
incident field is assumed to be 0-polarized. Shown in Fig. 2 are From the previous analysis and the range profiles shown in
the magnitudes of the range profiles for angles of incidence Figs. 3 and 4, one can see that the phenomenon of surface
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Fig 4 Experimental range profiles of thin rod for angles of incidence equal to (a) 30*. (b) 45". (c) 60*. (d) 75'

traveling waves is quite evident in the straight wire case. If the
rotation center is chosen at the center point, the effect of
constant ranees (2h, 6h, etc.) on the reconstructed image will
he rings with constant radius [7]. Shown in Figs. 5(a) and 5(b)
are the numerical and experimental images reconstructed from
the data collected over an angular window in 0 from 20' to
80 ° , respectively. It is seen that ringlike artifacts appear in the
images and the end points are intensified. This example shows
that the presenke of traveling waves usually degrades the
imace.

(ai ihi

IV. EFFECT OF IMPEDANCE LOADING Fig 5. (a) Numerical tim.,-. reconstructed from data collected over angular
window from b = 20" to 80". (h) Experimental image reconstructed from

The geometry of a loaded straight wire is shown in Fig. 6. the data collected over an angular window from 0 20" to 800
three lumped resistors, each with resistance 50 f9. are added at
z, = 0.5h, z, = 0, zi = -0.5h, these loading points will Shown in Fig. 7 are the range profiles of the three-loading-
cause extra reflections. Both the incident wave impinging on point wire at several angles of incidence. Examining these
the loading points and the waves traveling along the wire plots, one finds that more lobes appear and the lobe produced
arriving at the loading point will cause additional reflections. by the loading point is not as narrow as those produced by the
This fact results in additional peaks in the range profiles. end points. Furthermore, the number of lobes between I and
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Fig. 7. Numerical rangc profilcs of straight %kire with three loading point, at angles of incidence equal to (a) 30". (b) 45". (c) 60".

I is not necessarily equal to the number of loading points (tr 80 ° are shown in Figs. 9 (a) and 9(b), respectively. It is seen

example, see Fig. 7(b) with 0 = 45°). These additional lobes that the loading impedance and the surface traveling waves
are due to reflections of the traveling waves, have distorted the images. By comparing the images of Figs. 9

To examine the loading effect experimentally, we divide the and 5, one can conclude that the images have been successfully

thin rod into three sections with a I -mm gap between them. distorted by impedance loading. However, the price paid is an
These gaps are expected to produce ai loading effect. However. increase in the radar cross section (RCS) [5].

it is difficult to assign a loading value in each eap. In addition. Finli>, we examine the effect of time-varying loading on
the equivalent loading impedance is also a function of the range profiles. Range profiles usually give the maximum
frequency because the gap distance in terms of wavelength is and minimum range information of an object along the

changed with frequency. The experimental range profiles for direction of propagation, which in turn provide the informa-
several angles of incidence are shown in Fig. 8. Extra peaks tion of the target dimension. In some applications, it is desired
appear in the range profiles due to the discontinuities of the to distort the range profile so that the radar cannot deduce the
gaps. However, the magnitudes of the,,e peaks differ frorn the ohiect dimension from the range profile. One may use an
counterpart, of Fig. 7. i htiad-band slave lammer to distort the range intorma-

The numerical and experimentail imagcs reconstructed tron tion, hut this is not what we wish to discuss. We try to use a
the data collected over an angular sxindo% from 0 20' to passivc impedance load to achieve this goal. Impedance
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Fig. 8. Experimental range profiles oti three-segment thin rod at angles of incidence equal to (a) 30*. (b) 45*. (c) 60*. (d) 15*
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Fig. 9. (a) Numerical image of straight wire with three loadiag points
reconstructed from data collected over angular window from 0 = 20° to
80*. (b) Experimental images of three-segment thin rod reconstructed from
data collected over angular window from 0 = 20* to 80'.

loading can change the magnitude and phase of the scattered reactive loading on the range profiles of a loaded straight wire.
fields. If the loaded values are randomly varied for each time The parameters used are number of loading points n equal to 5
instant, the randomness might cause random peaks in the and 0 = 45". Each loading impedance is either fixed to 50 Q.
range profile. or randomly resistively varied from 0 to 100 0. or randomly

It has been concluded that reactive loading can make a more reactively varied from -j50 to +j50 Q. The range profiles of
drastic change in the scattered fields (either in phase or the three loading cases are shown in Figs. 10(a), 10(b), and
amplitude) than resistive loading can. and increasing the 10(c). respectively. From the figure one can find that the
number of loading points can produce greater field variation difference in the range profiles with fixed resistive loading and
[5]. It is also known that the reflection coefficient at a given that with randomly varied resistive loading is small, and
point is a function of the characteristic impedance and the randomly varied resistive loading does not create random
loading impedance at that point. If the loading impedance at a peaks.
point is randomly switched between capacitive loading and
inductive loading, the phase of the reflection coefficient at that V. CONCLUSION
point will be changed at each time instant. Consequently, the The scattering mechanism of a straight wire has been
peak of the range profile at that point may be reduced, and the qualitatively analyzed. Plots of range profiles at different
phase variation of the backscattered field between two adjacent aspect angles show that surface traveling waves are important
frequencies may be more abrupt. This will increase the scattering mechanisms of a straight wire. The presence of
effectiveness of the random loading in distorting the range traveling waves makes ringlike artifacts appear in the image of
profile. a straight wire. It is also found that lumped impedance loading

In the following we compare the effect of a fixed loading, a can eitxfctively distort the range profiles and the reconstructed
randomly varied resistive loading, and a randomly varied ima-t!e. Furthermore. randomly varied reactive loading can
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A New Iterative Algorithm for Extrapolation of
Data Available in Multiple Restricted Regions

with Application to Radar Imaging
HSUEH-JYH LI, NABIL H. FARHAT, FELLOW, IFF, AND YUHSYEN SHEN

Abstract-A new iterative method for extrapolatian of incomplete process, the first three methods above can be shown to be
segmented data available in multiple separated bands is proposed and equivalent 161.
tested. The method uses the Burg algorithm to find the linear prediction Most of the nonlinear spectrum estimation techniques are
parameters and an iterative procedure to improve the estimation of the developed to process the data in the time and frequency
linear prediction parameters and the extrapolation of the data. This
method is especiall) effective *hen the spectra (Fourier transform of the domains. However, there is an analogy between the time-
observed data) are in discrete forms. In the context of radar imaging frequency domain and space-spatial-frequency domain. In
represented here, this means the objects consist of distinctly spaced microwave diversity imaging, for a given aspect angle, the
scattering centers. The adsantages of this algorithm are demonstrated frequency response of the scattered fields corresponds to a set
using both numerically generated and realistic experimental data pertain-
ing to high resolution radar imaging. of time-series data, while the square of the absolute value of

the range profile, which is defined as the Fourier transform of
the frequency response, corresponds to the power spectrum.

I. INItRODUCTioN It is known that the linear prediction method is especially
T IS WELL KNOWN that the resolution of microwave suited for those cases when the spectra are in discrete form.
diversity imaging systems [I] depends on the spectral and Under high-frequency conditions, the scattered field from a

angular (aspect related) windows. To obtain the range infor- complex shaped target can be attributed to a few discrete
mation of the target, one can use a pulsed signal analyzed in scattering centers that include edges. It will be shown that
the time domain and map the range profile of the target as under the high frequency approximation the locations of the
function of aspect angle or use a broad-band continuous wave scattering centers and their scattering strengths are indepen-
(CW) signal analyzed in the frequency domain to yield its dent of the operating frequency for a given transmitter/
frequency response. The range resolution is inversely propor- receiver pair. This is equivalent to saying that the spectra (or
tional to the bandwidth coverage of the measurement system. range profiles) of the scatterer are also of discrete form. These
In practical situations, however, due to limitation of the phenomena provide the motivation to apply the linear predic-
measurement system or restriction of bandwidth allocation, tion method to microwave diversity imaging.
the observed data can lie in multiple restricted spectral regions Although the spectra estimated by MEM or AR can be very
which we call passbands. Several methods of extrapolating the sharp and well resolved, this may not be an advantage in a
measured data beyond the observed regions have been microwave imaging system. If the data are not sampled
proposed and tested [21-141 in an attempt to achieve the full densely enough in the spectral domain, the sharp, well-
resolution of the unrestricted spectral range, when a prior resolved components may be missed, and the results may not
knowledge of the maximum dimension of the object exists faithfully reflect the actual spectral amplitudes. Besides, image
and an iterative procedure is applied. The use of linear reconstruction from microwave diversity imaging systems
prediction for the interpolation and extrapolation of missing involves coherent superposition of the data in the spectra, or
data and data gaps has also been reported [5]. range profiles, of the scattcrer (obtained at different aspect

To increase the resolution obtained from spectral data of angles), where these arc estimated from partial data available
such limited extent, techniques of nonlinear power spectrum in segmented bands i1. If the estimated amplitudes of the
estimation have been used with notable success [6]. These range profiles obtained by MEM or AR depart from the
include autorcgression (AR), linear prediction (LP), and desired values because of undersampling, image degradation
maximum entropy method (MEM) and multiple signal classifi- will result. Furthermore, we are interested not only in the
cation (MUSIC) algorithm (71. For a stationary GaussIan magnitude of the range profile, but also in the phase of the

range profiles as required for the coherent superposition.
,Mdnuscriri received April 16. 1986, revised October 20, 1986. This work Therefore, to overcome the dense sampling requirement and

was suppored by the Air Fort-c Office of Scientific Research. Air Force retain the phase information of the range profiles, it may be
Syslcrn Command Grant AFOSR 81 0240F and by the Army Research Office
under Contract D)AAG 2983 K-0120 P02 preferable to extrapolate the data available in the various

The authors are with the Departmcnt of Electrical Engineering, Moore passbands into the vacant bands before the spectra or range
School of Electrical Engineering. Univcrsity of Pcnnsylsanta. Phildelphia. profile are formed, and image reconstruction is then under-
PA 19104

IEEE ltog Number 8613t88. taken.
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To extrapolate the data beyond the observed region, an
intuitive way is to predict the exterior data by using the same
parameters obtained by the linear prediction model. One of the
most popular appioaches to linear prediction parameters i 1 i . rf
estimation with N data samples is the Burg algorithm [6], [8]. 1
For a given number of data samples in a given observation region I f region II

interval, in order to separate the discrete spectra (in this paper, 0

spectrum is defined as the Fourier transform of the observed Fig. 1. Available data in multiple regions. Passband (shaded region)

data), the required model order in the linear prediction method surrounded by vacant bands.

increases as the separation of spectra decreases, i.e., it is easier
to model the data sequence for spectra with larger separation, ap, are called linear prediction parameters,and the asterisk
which translates into well separatA scattering centers, than denotes the complex conjugate operation.
those with closer separation. In addition, for a given model If one is going to extrapolate from the available data beyond
order and given number of sampling points, it is easier to the observed region, a straightforward way is to use the
distinguish the two close spectra components (scattering estimated prediction parameters ap, and the measured data by
centers) by a data set with longer observation interval than that the following equations:
by a data set with shorter observation interval. It was also p

suggested that the model order should not exceed half of the a1,,X.'.i k, ' j>0; (4)
number of data points for short data segment because k=I

otherwise the linear prediction spectral estimate will exhibit
spurious peaks [6]. From the above observations, one can P
conclude that it would be more difficult to resolve two closer _ p ~kx , j>0, (5)

point targets (Fourier transform of the observed data in k I

frequency domain) with short data band. If all the observed where the caret denotes the estimated value.
data within multiple restricted regions can be fully utilized, If the data available are confined to multiple separate

better resolution can be expected. spectral regions or passbands of equal width as illustrated in
In this paper, a new iterative method which uses the Burg Fig. 1, and one tries to extrapolate from the observed data to

algorithm to find the linear prediction parameters and an the vacant bands, an intuitive method is to divide the inner

iterative procedure to modify the prediction parameters is vacant band into two parts of equal width and to extrapolate

proposed and teste.! With both simulated and realistic mea- into the left part by using the prediction parameters obtained

sured data generated in our anechoic chamber experimental from the data set of region I and extrapolate into the right part

microwave imaging and measurement facilities. With this by using the model parameters obtained from the data set of

algorithm, one can obtain acceptable extrapolation beyond the region II.
c' ,erved region if the spectra are in discrete forms and the If the data sequence can be correctly expressed by the

,aration of the spectra are not too small. Both simulations prediction parameters, then the extrapolation error, which is

and experimental results are presented to demonstrate as an defined as the absolute value of the complex difference
example the effectiveness of the method in microwave between the actual values (either computer generated or
diversity radar imaging. measured values) and extrapolated values, would be very

small. However, if the prediction parameters cannot model the
sequence correctly, the error of extrapolation may accumulate.

An approach to linear prediction parameter estimation with We have found that the linear prediction model which
N data samples Ixi, "", x,.j was introduced by Burg [8]. characterizes the data sequence is more accurate for longer
The linear prediction parameters are obtained by minimizing data strings and larger model orders, especially in the presence
the sum of the forward and backward prediction error energies of noise. However, the model order should not exceed half the
(P. number of samples because the estimated spectrum will

, , . produce spurious peaks [;.
,, ,t+ hp,,,2, (,) In order to utilize the information available in different

" ":; regions, a new iterative algorithm using the Burg algorithm to
subject to the constraint that the prediction parameters satisfy a estimate the prediction parameters and an iterative procedure
recursion relationship [5]. e,, is the forward prediction error is proposed. The procedure illustrated in Fig. 2 is as follows.
with model order p and is given by ) Divide the inner vacant band into two parts of equal

p

ep,= a,k,, k, (2) %idth. Extrapolate into the left part by using the
k - 0 prediction parameters obtained from the data set of

and h,, is the ba,.kAard prediction error wA ith model order p region I and extrapolate into the right part by using the
anti is gica by prediction parameters obtained from the data set of

P, region II. If the bands are not equal in width, unequal
bp, , a. M,,. -k(3) division of the vacant intervening bands may be appro-

k -o priate.
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ITERATION ALGORITHM

- I

I. Available data in regions I & 11

are used to extrapolate into regions
I<- ..K.-I - U.. IV - -)K IV-X 111 6 IV.

AR PARA-ETERS ESTIATION {aji 2. Use data In regions I + II + III + IV
to estimate the parameters {aj)i,
where I represents the iteration
number.

3. Use data In I and faj)i to extrapolate
into region I11. Use data in 11 and

{aj)i to extrapolate into region IV.

Convergence Test

a. Use data in III and {a 1i to estimate

new data values in region 1. Use IV

and la )i to estimate new data values
in region II.

eI . E +E

I P IV -- I

es ErrboClulteero

Energy test ei<e1 _ ? c. For the resultant data is in step 3:

If el < e_ 1 , J+1 4 i. go from step

3 to 2 otherwise iteration stopped.

Fig. 2. Schematic diagram of the proposed new iterative extrapotation method.

2) With the vacant hands' data together with the observed estimation of x, R' are the backward estimation of x, e,

data, use the Burg algorithm to find a new set of is the forward prediction error, and b, is the backward
prediction parameters. prediction error.

3) Using this set of prediction parameters and the data of 5) With the measured data together with the estimated
region 1, extrapolate into the left part of vacant bands, vacant bands data, use the Burg algorithm to find a new
and using the same set of prediction parameters and the set of prediction parameters. From the measured data
data in region II, extrapolate into the right part of the and this new set of prediction parameters, extrapolate the
vacant bands. vacant bands' data as described in step 3.

4) Using this set of parameters together with the extrapo- 6) Use the same procedure of step 4 to calculate the new
lated data, estimate the data in the observation region I error energy of the passbands, call it E2.
and I1. Calculate the error energy between the measured 7) Compare E, with E2, if E2 is smaller than El , replace the
data and the estimated data in the observation regions. error energy E, by E2, repeat step 5.
The error energy is denoted by El and is given by 8) If E, is greater than El, stop the iteration, and take the

extrapolated data of the previous loop as the final result.E,- , x,-c, :+l,-;'12 ,le, J'+ 1, 1',  (6)
In step 1, if the width of a single band (band I and/or band

where x, are the measured data, ., are the forward II) is not large enough, the extrapolation errors produced by
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the prediction parameters obtained from single passband data Z
may be very large, in that case, we can set the data in the
vacant bands to zero.

The above iterative method can be easily applied to the case RECEIVING A
ANTENNA J SHADOWED

where only one single data band is available. The procedures REGION
are almost the same except that only one data sequence is used

to extrapolate to the exterior bands and to calculate the Sll y
extrapolation errors.

111. SCATTERING PROPERTIF-S OF A METALLIC OBJEcT Pt

In this section we shall show that under the high frequency
approximation the scattered fields of a metallic object can be T T t
expressed as superposition of scattered fields of discrete TRANSMITTING /
scattering centers. These phenomena allow us to apply the ANTENNA

proposed extrapolation algorithm to radar imaging. Fig. 3. Geometry of the scattering measurement system.
For a metallic object large compared with wavelength, the

scattering mechanism can be divided into the following
components 19]: where F' are the vectors such that

1) specular scattering points;
2) scattering from surface discontinuity: edges, corners, d=- 0, (10)

tips etc.; da"
3) scattering from surface derivative discontinuities;
4) creeping waves; and
5) traveling waves; 71]
6) scattering from concave regions; Si = (11)
7) multiple scattering points. da' 2  

,'..

For most situations, the major contributions to the scattered where d/da' is the derivative with respect to the surface
waves are ascribed to the specular scattering points and edge curvature. The points 7' corresponding to the solutions of(1 1)
diffractions. are called stationary points or equiphase points or the

Consider a metallic object seated on a rotated pedestal and scattering centers, the term A(7.,') x 170(k)/VJ- = j is
illuminated by a plane wave as shown in Fig. 3. The distance called the scattering strength for the particular scattering
between the rotation center 0 and the transmitter and receiver center at 7. It is seen that the locations of the scattering
are R, and R,, respectively, and the unit vectors in the centers depend on the directions of/T, ,, as well as the shape of
directions of transmitter and receiver are f, and ,, respec- the metallic surface. The scattering strength depends on the
tively. Under the physical optics and Born approximations, the local properties of the scattering centers. The above analysis
vector potential at the receiver under the far-field condition illustrates that the object function we would be dealing with in
can be expressed as [1] high-frequency radar imaging are of discrete form consisting

jk . of point scattering centers.
A(k, 1" 4rR, e jkR, 2#(7') If the received scattered fields have been calibrated with a

reference target [i], the corrected vector potential can be
x Ho(k)eI(,, -410 7'1 dS', (7) expressed as

where k is the wvavcnumbcr, S,11 the illuminated region, fi(T-) A(k,,, f,)= eJkt,-t,'i. (12)
the unit normal vector at the surface point 7', and 1 0(k) the (

incident magnetic field at the rotation center. The scattered
field is related to the vector potential by The Fourier transform of (12) will give the range profile and

scattering strength of the scattering centers.Pf.(k, [,, I',)=j .4r(k, ,, F,) (8)
IV. RESULTS

where AT is the transverse component of A along the direction

f. In this section, the performance of the proposed new

As k approaches infinity, the asymptotic expression of the algorithm using both simulated and realistic data will be

above equation can be obtained by applying the stationary evaluated. First, assume for simplicity an object consisting of

phase method [81 to (8). The result is n point scatterers locrted at (r0 + y,) is illuminated by a plane
wave, where r0 is the distance between the transmitter/receiver

ijk j2 2 and a reference point of the object and y, is the differential
47rR, 7 range of the jth scatterer (range relative to r0 ). Under far field

k k ,-f Jr'I condition and ignoring multiple scattering, and considering for

x It(k)e.'t'-h, 'l (9) simplicity a scalarized version of (12), the corrected scalar
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field can be expressed as

E;(k (13) 4

In the following simulation, the theoretical values of E' (k) 2
are calculated in 200 equally spaced frequency steps covering 0 ,
the frequency rangef, = 6 GHz to f 2oo 16 GHz, with an -4.4

assumed signal to noise ratio set to 40 dB. These values 0
anticipate the realistic experimental data utilized in testing the 1 30 80 120 170 200
algorithm. SAMPLE POINT

Assuming the available (computed) data are in the following ta)
passband (f3o, fso) and (flzo, foo). We want to extrapolate the 1.00 _

data to the vacant bands (fi, f 29), (fsil, fz2), and (f1o, f 2OO). Li
The range resolution obtained by the discrete Fourier trans- 0.5-
form (DFT) method using the whole bandwidth (fl, f 200) is

Z 0.50about 1.5 cm. The resolution using a single frequency band is
about 5.5 cm. The resolution using both frequency bands is <
about 2.0 cm, however, very high sidelobe levels will be

produced. We consider an object consisting of seven point 075 0 75 -75 0 75
scatterers, the location and scattering strength for each point )c)
scatterer are (r, = - 30 cm, a, = 0.5), (r2 = - 20 cm, a2 = 1.00
0.5),(r' = -10 cm, a3 = 0.5), (r 4 = - 2cm, a4 = l),(r. 0702 0.75

10 cm, a5 = 0.25), (r6 = 20 cm, a6 = 0.25), (r7 = - 30 :

cm, a7 = 0.25). The values of the field at each sampled Z 050
frequency f, are calculated using (13).

Define the extrapolation error at frequency f, as 2 0.25

= IE; (fj)- t, (14) 0
-75 0 75 -75 0 75

where P (f) is the extrapolated value atf. The extrapolation DISTANCE (cm)
errors for different algorithms are compared and shown in Fig. (d)
4(a). The bold solid curve is the amplitude of the theoretically Fig. 4. (a) Magnitude of theoretical fields and comparison of extrapolation
computed fields E,'(f,), the thin solid curves are the errors ofdifferent methodsf, = 6 GHzfxo = 16 GHz. - - magnitude

of theoretical fields; -: extrapolation error from a single passband, no
extrapolation error after 100 iterations using the algorithm iteration; .... : extrapolation errors from new iterative algorithm.

proposed in [3], the dashed curves are obtained by using the extrapolation errors from algorithm proposed in 131. (b) FFr of the whole
Burg algorithm to find the prediction parameters from the band data. (c) FFT of the passband data. (d) FFT of the pasband and

extrapolated data with one iteration (e) FFT of the passband and
respective passband, and using this set of parameters together extrapolated data using algorithm proposed in 131.
with data in each passband to extrapolate to the outside regions
(bands II and IV). The dotted line curves are obtained using
this new algorithm with one iteration and with model order 25. generated by the proposed algorithm is shown in Fig. 4(d)
The algorithm proposed in 131 basically involves application of which exhibits excellent agreement with the all-band result of
the Gerchberg algorithm to data in the multiple restricted Fig. 4(b). The magnitudes of the peaks in Figs. 4(b) and 4(d)
regions. However, no numerical or experimental results are depart from the original assigned values because of zero
given in that paper. It is clear from the results obtained here padding used in the fast Fourier transform (FFT) algorithm.
that the algorithm in 131 seems not to be effective in the case This lack of fidelity in scattering strength reconstruction does
considered as the errors can exceed the amplitude of the not have a discernible degrading effect on the quality of image
theoretical fields. Extrapolation from single passband is not reconstructed as will be illustrated below, but is important and
good in this example, because the model order is not sufficient must be dealt with when quantitative analysis of scattering
to model the data series in the presence of noise. The proposed strengths is needed.
new method after one iteration is seen to produce small error. If the frequency coverage is increased to f , = 6 GHz, foo

The Fourier transform (FT) of the all-band data (i.e., data in = 20 GHz) with the number of sampling points being fixed to
region I to IV). passhand data only, passband plus extrapolated 200 and the passbands are kept at (f 3o, fso) and (fjn,fl-0 ), the
data with the new proposed method are shown in Figs. 4(b)- computed fields and the extrapolation errors would be as
4(e), respectively. Note that the FT of spectral data yields shown in Fig. 5. It is seen that the extrapolation error indicated
range profile of the scattering object. It is clear that FT using by the dashed line becomes smaller. If the frequency coverage
passband data only (Fig. 4(c)) has very high sidelobe is decreaed to (f, = 6 Glz,fz0 = 12 GHz), the results would
structure, the FT of the extrapolated data using the algorithm be as shown in Fig. 6. It is seen that the extrapolation errors
in [31 (Fig. 4(e)) is totally different from the original of Fig. indicated by the dashed and dotted curves are now both high.
4(b). The result obtained by Fourier transforming the data The FFT of the whole band data. passhand data only. and the
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Fig. 5. Magnitude of theoretical fields and comparison of extrapolation (a)

errors with and without iteration, f, = 6 GHZ. fw0 = 20 GHz. - : too
magnitude of theoretical fields; ---- : extrapolation error from respective t.]
passband, no iteration, .... extrapolation errors from new iterative O 0.75
algorithm.

Z 0.50

4 0.25
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' - -- ,(b) (c) (d)

,'.- Fig. 7. (a) Magnitude of the measured fields and comparison of extrapola-
K> -tion errors without and with on iteration. - : magnitude of theoretical

1 30 80 120 170 200 fields; ---- : extrapolation error from respective passband, no iteration; ....
SAMPLE POINT extrapolation errors from ne'. iterative algorithm. (b) FlT of the whole

band data. (c) FFr of the passband data. (d) FFT of the passband and
(a) extrapolated data with one iteration.

to00
0,0.75 is positioned for a fixed elevation angle of 30" while the
- azimuth angle was altered between 0° and 90" in steps of 0.7*

Z- 050 for a total of 128 angular looks.
02 The passband is first defined as (f~o, fm0) and (f,20, fi70).,: 025

The measured values and the extrapolated errors of the
0.00 0 broadside look which is 90* from the head-on look are shown

-75 0 75 -75 0 75 -75 0 75 in Fig. 7(a). The solid line curve is the amplitude of the range-
DISTANCE (cm) phase corrected field (see [1)). The dashed curve represents

(bi (c) (d) the extrapolation error resulting from extrapolating from each
Fig 6. (a) Magnitude of theoretical fields and comparison of extrapolation single band (hands I, II) with model order 25 as described in

errors with and without iteration, f, = 6 Giz, fo = 12 GHz. - :
magnitude of theoretical fields; ---- : extrapolation error from respective step I of the proposed algorithm. The dotted line curves are
passband, no iteration; ... : extrapolation errors from new iterative obtained using the new algorithm with one iteration and model
algorithm (b) FFT of the whole band data. (c) FFr of the passband data. order 25. The extrapolation error for measurement is defined
(d) FFT of the passband and extrapolated data with one iteration, in a manner similar to the definition of error in numerical

simulation as the magnitude of the difference between the
extrapolated plus passband data using this method are shown corrected measured fields and extrapolated fields. The Fourier
in Figs. 6(b)-6(d), respectively. The results in Figs. 5 and 6 transform from the whole band data, the passband data only,
indicate the desirability of using segmented spectral data and the passband together with extrapolated data are shown in
spanning wider spectral ranges. Figs. 7(b), 7(c), and 7(d) respectively. Fourier transform of

Although the above algorithm is an iterative one, it was the corrected scattered fields will give the range profile of the
found that extrapolation errors usually decrease significantly target in that view. In this figure, it is seen that the
after the first iteration, and further iterations do not seem to extrapolation errors do not improve after one iteration. The
improve the results. Therefore, it is practical and frequently reason can be explained from the plot of the range profile
sufficient to use only one itcration. shown in Fig. 7(b). In this view direction, the major

The performance of the algorithm using realistic data is also contributions to the scattered fields are due to fuselage and
evaluated. The test object, a metalized 100:1 scale model of a primarily those engines and fuel tank which are on the
B-52 aircraft with 79-cm wing span and 68-cm long fuselage illuminated side. Specular scattering from these points are well
was mounted on a computer-controlled elevation-over-azi- separated in time or distance and their number is small. Hence
muth positioner situated in an anechoic chamber environment, the linear prediction parameters obtained from single passband
Two hundred and one equal frequency steps covering thefi = are sufficient to model the data sequence. The e\irapolation
6.1 to f20, = 17.5 GHz range were used to obtain the errors are not as small as those obtained by simulations. The
frequency response of the object as described in [I1. The target reason of this is that the applicability of linear prediction
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(a)

(b) (C) (d)

(e) If) (g)

Fig 8 Reconstructed images of the metalized scale model B-52 aircraft using an angular window 90 extending trom head-on to

broadside in 128 looks and different spectral coverage, Reconstructions from: (a) Entire bandwidth (f, f,0). (b) Passband (f,.

J). (f 1 ,fm)- (c) Passband (fo.fv,), (f,. f-,) and extrapolation data (extrapolated data into empt. bands) without iteration (d)

Passband (f3, fA ). (f,. f-,) and extrapolation data with one iteration. ei Passband (f,,, flo). (f) Passband (f,,, f,,,,) and
extrapolation data % ithout iteration (g Passband (f, f, 0) and extrapolation data with one iteration.

model to the extrapolation of scattered fields of a metallic shown in Figs. 8(e). 8(f). and 8(g), respectivel, .The mnodel

object is based on the high-frequency approximation. In the order used is also M = 25.

measurement data, however, polarization effects, edge dif- It is seen that the image quality of Figs. 8(c) and 8(e) are as

fraction. multiple scattering and the failure to satisfy the high good as that of Fig. 8(a). These results sho,, the effectiveness

frequency approximation in the lower region of the frequency of the application of the proposed algorithm to radar imaging

band utilized in the measurement will degrade the performance from segmented data bands.
of the algorithm.

The reconstructed images of the test object using data V. CONCLLSION

collected in an angular windows of 900 extending from head- A new method employing the Burg algorithm and an

on to broadside in 128 looks (see [II for details) and different iterative procedure to extrapolate observed data beyond

frequency bands are shown in Fig. 8. The transmitting antenna restricted regions of observation has been proposed and tested.

is right-hand circularly polarized and the receiving antenna is Simulation and experimental results prove the effectiveness of

left-hand circularly polarized, which constitutes bv the con- this proposed method. The algorithm is especially effective

vention given in [91 a co-polarized transmitting!receiving when the spectra of the collected data (the object range profile

system. Fig. 8(a) is obtained by using the whole band data: in this case) are in discrete form. Possible applications of this

Fig. 8(u) is obtained by using the passband data alone. Fig. new method can be found in diverse fields whenever the data is

8(c) and 8(d) are obtained bv extrapolating without iteration available in restricted bands. For example, in multiple band

and after one iteration, respectively. The model order used is microwave imaging system, the quality of the image obtained

Mf = 25 in both cases. b extrapolating from a much smaller bandwidth can be as

If the passband is defined as (f 5 , fio), the reconstructed good as that obtained by data in the full bandwidth. The cost of

images obtained by using the passband data alone and bh the imaging system can hence be reduced drastically as the

extrapolation without iteration and after one iteration are cost of the required gear can be much lower than the cost of the
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Radar targets can be identified by either forming images with cepts and methodologies for en_'owing the images formed
sufficient resolution to be recognized by the human obserser or with the highest resolution possible to facilitate their reli-
by forming signatures or representations of the target for auto- able identification by human observers. Near-optical res-
niated matfhine ruc(gition Tornographic Sic(rosase Di "ersitv
Imaging t,( hoiques that omhine angiiar aspet). spec tral and olut ion and cost effectiveness are usually the objective. The
po!ar,''ati n degrees of freedom hat bet, shri n. as summarized second approach is automated recognition of the target by
in the first part of this paper, to he capa!ih- ,f produc in' mages of a machine using suitable target signatures or representa-
the scattering centers of a target ith near opti(al res,!,uton. tions. This approach is (alled for when we do not have suf-
Despite this capabilltv there are circ un stan(es when the si/e aind
or cost of the physial aperture needed tii furnish angular degrees ficient information about the Radar Cross Section (RCS) of

of freedom is too high, or when the time delay in(led in syn- the various parts of the object to be able to define it. Here,
thesizing such an aperture through relatise motion betieen the one is concerned with issues of correct identification given
radar system and the oblect being lriaged (as, for eiample, in SAR partial or sketchy information irrespective of range or aspect
and ISAR) is not acceptable )ne is laced then with the problem
of hating to identitN the target from a limited amount of iforma- of the target or its location within the field of viev% tith the
tion that is insufficent to produce an identifiable image We show help of systems that can do this in robust and fault-tolerant
that collective nonlinear signal processing based on models of manner. In this second approach, the processing carried
neural neti,4orks (unhined ith the use of suitable target signa- out by the eye-brain system in identifying the image in the
lures (here sinigram representations) offer the promise of robust first approach is to be mimicked by a machine. The motives
super-resolted target identfication from partial information
Results presented are of numerical simulations for a neuromorphic for automated recognition are varied with speed and cost
processor where the neural net performs simultaneously Phe func- effectiveness ranking high among them. Both approaches
tions of data storage, proc essing, and recognition by automatically involve amplitude and phase measurements of radar echos
generating an identifsing object label, and fast optoelectronic from complex-shaped objects as function of orientation,
architectures and hardware implementations are briefly men-
tioned. Correct identification from as Iov as 10 percent of the full frequency, and polarization using the same gear widely
sinogram representations derned front real data collected in an employed in making complex RCS measurements. In the
anechoic chamber eni ronment for three test targets (scale models following, the terms identification and recognition will be
of 8-52, AWAC, and Spate Shuttle) and taught to the network is used interchangably.
demonstrated. Practical considerations and extensions to real sys- In this paper, we discuss both approaches described
tems are briefly discussed. The neuromorphic approach to target
identification introdu(ed here has the promise of obtiating the above and show how they are interrelated and how an
need for large costly apertures that are needed for the imaging of understanding of the microwave imaging process and tar-
rernote targets It also suggests that nonlinear multidimensional get representation are required for the formulation of
dynamicalssstems mat proi.ideanaitnue to theprohlem of target methods for automated target identification. We begin in
identification from a single wide-band radar c 1h0. Section II with a qualitative review of the principles and

1. INTRODiUc TI(ON methodologies, of tomographic mit rowave diversity imag-

ing extensively studied and developed in our laboratory
There are two distinct approaches to radar target iden- v, here it is shown that mritrowave diversity imaging pro-

tifi ation, One is rni( roae image foronation tollowed by vides 3-D tornographic or projective images of scattering
recognition and identification bya human observer, i.e., by objects with near-optical resolution employing spectral,
the eye-brain system. Here, one is concerned with con- angular, and polarization degrees of freedom. Be(ause of

space limitations, it is not the aim here to dwell at length

Manusc ript ret ei\ed April 1, 19W, tes s(t eptemiber 3, 1188. on the principles and methodologies of microwave diver-

The author is th the Department ott ci tri al Engineering. Urn- sity imaging whit h have been adequately des( ribed in ear-
versit. ot Pennss ania. Philadelphia. PA 19104 USA her pciblitations [1]-(8], [11]-[211. Instead, the dis(u ssion

Iff Log \iimber 8127982 here is made inhvntionall brief but with suffi( ient cltall to
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provi( flt'he ha(kgriuild t0ir e s ul ng Itealtini' 0? ao 01) ",j1) ii e l\,.1 r ig' iitioii of( (oii.pilex -'. )Cid ,(, Il Ingh

matted targ(-t identiti(atio , I this t done by l)ri ii)gng lout 01( , t t wi l  p a r tial iiiihllation that (ai lit. as Ii % 1,s 2) to

those attributes of mi(ro,%ravediverslty lii agini that a0 tel- 10 ik elit (t the siiigrani reprws intati)n 0s pos bl. .% ith
evant to au tonated ,ma hine re( ognitIon. I his Is tl II) losed nciiral net arialog Ii)( essirs eniploying hetiro -, ao witi-
in Se(tlion Ill by a dis(ussion of a new appriia( h to taigct stoiage and re( all v% hi-re the out( ()ie is a %,l d lahel
itdenltitn ation from i in( () pete or sketchy intimatio)n (i1'( I ibing the r( ogli,'ed obje t. I hit n(ural nt I this
basec on models of neural networks. I he work is niotivalted Wnse performs lith, fumion i, of storage, poi (ssin, arid
by ithe de(ire to further redu e the prole( ted ost o t il( 1o- re( ogmt ion (laheling) simultaneously. I he work also ,tSg-
wave diversity imaging systems and by the fa(_ I that there gests a possi ble approath to target identific ation from a sin-
exist important circumstances when a real (physi al) or syn- gle broad-band radar e( h) based on nonliner dynamical
thetic baseline for an imaging aperture cannot be formed system theory and atlaptive learning which will be briefly
because of physical constraints in the former or bec ause outlined.
the time delay associated with aperture synthesis by target
motion in the context of Inverse Synthetic Aperture Radar 11. il( R %Asi Di\,iRsirs" IMAC,IN(,

(ISAR) is not acceptable. The aim is therefore to achieve In this section,a briefqualitativeoutlineofthepriniples,
automated recognition from partial information, espet ially methodologies, and capabilities of microwave disersity
when the amount of information available about the target imaging is presented.
is so meager that formulation of a recognizable image is ou t

of the question. Our interes' in neural signal processing or A. Principfes

'brain-like" pro( essing is readily appreciated when one
notes the assoc ative memory attributes of the eye-brain Target-shape estimation in the context of inverse scat-
system, its amazing ability at supplementing or completing tering from far-field data is a longstanding problem with
missing information, and the apparent ease and speed with considerable present-day interest that has been studied by
which it solves ill-pos d problems of the type encountered many (see, for example, [2], 1 11, [11 [-[191). It (an be shown
in vision, speech, arid cognition in general. Neural pro- from bask elettroinagnetic scattering theory, assuming that
(essing furnishes a new powerful approach to signal pro- physical optics and Born approximations hold, that
yessing that is both robust and fault tolerant and can be monostatic or bistati. measurement of the far field scat-

extremely fast when implemented optoelectronically in tered by an obje( t as a funt lion of illuminating frequency
order to fully exploit the fit between what neural models and object aspect can be used to access the Fourier spare
can offer (powerful collective, nonlinear, and iterative r(p) of the object-scattering -y(r). Here, p and r are three-
(dynamical) processing) and what optics can offer (paral- dimensional 3-D position vectors in Fourier space and
lelism and massive inter(onnectivity) [9], [101. The discus- object space, respectively. The oblett-scattering function
sion in Section III includes descriptions of neural-net -r can be loosely interpreted to represent the 3-D geomet-
models and refers to optoelectronic architectures for real- rical distribution and strength (RCS) of those sc attering cen-
izing content-addressableassociative memories that can be ters of the object that contribute to the ineasured field. The
useful in radar target recognition. Results representing the Fourier space-data manifold r,,(p) measured in practice is
performance of software implementation of such neural necessarily of a finite extent which depends on the values
processors in the recognition of scale models of aerospace ofp realized in the measurement. These depend in turn on
targets employing sinogram representations are given. The geometry and on the angular and spectral windows uti-
sinogram representation is chosen as an example of a target lized. It is possible then to retrieve a diffraction and noise-
representation (feature space or signature space) that is limited version -d of the object-scattering functions by 3-D
suitable for use with neura: processors. Other represen- Fourier inversion of I,_. In particular, tomographic or pro-
tations volving low-frequency polarization maps, e.g., jective reconstruction of -yd based on the projection-slice
plots of the state of polarization of the scattered field as a theorem or the Radon transform (see, for example, [161)have

function of frequency on an inclination angle versus ellip- been demonstrated from computed 121, [31, [15], [16] and
ticity angle Cartesian coordinate plane, and pole-residue experimental IS] and [61 data. Image reconstruction using
representation [29] of the scattered field, can be equally a filtered back-projection algorithm has also been dem-
considered. onstrated [20] and showrh to yield images with equivalent

Machine recognition with artificial neural networks relies quality to those obtained by Fourier inversion.

therefore ott the generation of target signatures (represen- Accessing the Fourier space of a scatterer in practi(e is

tations of target features or attributes) that can lead to "dis- not direct. It requires prepro( essing of the s(attered far field
tortion tolerant" recognition, i.e., recognition irrespective one measures in order to remove an undesirable phase fac-
of target range, orientation, or location within the field of for due to propagation between the target and the re ceiver

.: v traditionally referred to, as scale, rotation, and shift and to remove the effe(ts of clutter and measurement sys-
invariant recognition. Tihe generation of such representa- ten resp mse [6]-[8]. The range-phase removal is essential
tions usually involves the same gear employed in micro- for image reconstruction and is synonornous with syn-

wave (,'w) and millimeter-wave (mmw) diversity imaging or thesizing a common phase reference or phase center on the
in performing RCS measurements. In fact, the sinogram target. It ( an be interpreted as a Target Derived Reference
ripresentation contains, as will be shown below, exactly (Tt[R) method [211 in whi(h the target itself is made to fur-
the same in formation ( ontained in a pw/mmw image of the nish in effe( I the reference phase for the c omplex field mea-

target -A,._ 'pt that the information is dti .,ed in a different s-,rements at an ohservation point. The vet( for nature of
format that is more amenable for use in automated rec- eolv' romnagnel( ,(altering (an bet reated by assuming that

ognition sc hemes. The work presented here shi)ws that tile s (attering matri( whitch chara( itrlzes the polariation
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),)) (ll' III, oft II, Imgo a ndt l cm11 p it m idc addt d wilh r- p lar liat< l if) O Irlil111'irld wit ( nIg ait'ilal Il" an

ii til, Is inea,urcd ,Iat Iers fre(InLit' I( and ],apti( I I it,,le for anI alecrt ur target %it-% Ing angle. I lie inl- MIr l i(lttaton

at %\ ha h tht 't at,1[ Ig tar get Is o ,,)'r\t'd. .- polarizat itn shov n nieasurts the stepped freriiifn( y responnst' fI the
enIant td ;mike (i an in prim pt' be of)bta in ed by it cherent d ,dtterer. \'i tuallv any radar ilnagin g( (onitiguratir (Jr rio-
so per p)tiit nfl add iI ion (I intensities)e the Itniagt s forIed vat I e imaging (on( tpt ( an b, readiI sImlulated ( (ic' ttt( -

Irnnr thfo aI t I ,,,'-(d 1 .rier-spat v d ata associ lated v ith a(. h ti el y. Iner.e ,. nth t iL ape.rItire radar (I ARi, sp(t l ight
f In- t)urr( rnpnnt-'t, th s( attering natrJx. InI ti\\ \%rk imaging, and arras iiaging (an all be simulated and stUd-

dct,( ri ied bl( , polarization enhancement of the images ltd. AIl o, any Illuminating pulse ( an ie- s, nthes/ild by ton-

is at hieed b\ in oherent super position of images deri\ed trolling the amplitude arid phase of the Cw signals used to
from only the copolarized and cross-poh rized components illuminate and acquire the stepped frequency response of
of the scattered field. the target. In the arrangement shown in Fig. 1, the trans-

The aboe concepts represent the basic print ples on mitting and re( eiving antennas are nearly monostati(, but
shich the methodologies of microwave diversity imaging, bistatic and multi-static measurements can also be per-
discussed next, are based. formed. State-of-the-art microwave instrumentation is used

to enable making complex scattered field measurements
B. Methodologies with extremely high accuracy ( ± 0.1 dB, + 0.5 degree) over

a dynamic range of better than 80 dB. Better accuracy is
In our wsork, the Fourier space of a scattering object is achieved by averaging several independent readings at each

accessed using an automated experimental radar scattering measurement frequency. Frequency can be set automati-
and micro.ave imaging facility (see Fig. 1). The facility en- cally with an accuracy of better than 4 Hz and with stability
ables accessing the Fourier spaceof scale models of targets of better than 240 Hz. Results demonstrating the capabil-
of interest placed in an anechoic chamber over extended itiesof the facility in microwave diversity imaging of several
microsave s,.indows (10 MHz-26.5 GHz), for any, state of representative targets are showr in Figs. 2 and 3. The Fou-

rier slices shossn in Fig. 2 (onsist u t 'i plots of 128 fre-
quency responses of the test objective t. re( ted for range-
phase and system response taken over an angular window

TARGE of 901 extending in azimuth from head-on to broadside at
A a fixed elevation angle 6 with each view containing 128 fre-

quency points. In these polar plots, frequency is along the
C_. a -O < radial direction and aspect (azimuth angle) is in the angular

/,', direction. Interpolation of the polar formatted data of a slice
onto a rectangular grid followed by Fourier inversion yields
in accordance to the projection slice theorem [22] a pro-

jection image ot the scattering centers of the test object.
The projection image represents the projection of the scat-
tering centers of the target on a plane normal to the azi-

7 Ailing ],t muthal axis of rotation (plane parallel to the plane of the
w AFourier slice). Fourier inversion of the frequency response

,dFrumm Pa.k" 1 'for a given viewing angle yields the complex impulse
d A Mresponse or complex range-profile of the target at that angle.

The range-profile resembles the echo or response of the

DI-tili target when subjected to impulsive plane-wave illumina-
tion for the given viewing angle. The complex nature of the
range-profile is caused by the fact that only positive spectral
windows can be employed in practice. By displaying the

,pg-93,8411A Imodulus of the complex range-profiles side by side against
11110,-, C-Ori Pa*Ca*i the azimuthal angle of rotation p, one obtains the sinogram

-4__T i /" y representation for a given elevation angle 0 of the object.
Sinograms are discussed further and utilized in Section III.

hFig. 3 shows examples of projection images of two test

h '4lOB84t A Se" R F Ul objects and the process of their enhancement by polariza-
Me",.ll D,,. U* .d .tion diversity and symmetrization. Circularly polarized

plane-wave illumination was used, and b)0th the co-polar-
ized and cross-polarized components of the scattered field
were measured; associated Fourier space slices were
formed from which images were obtained. It is evident from

DEC the images formed, for the different polarization states, that
M NC-11 these contain some complementary information. There-

fore, some image enhancement can be expected wi.hen the
intensities of the co-polarized and (ross-polarized images

s' rcsi CFohJRAT10t are added as demonstrated by the images in Fig. 3ic),
Fig. t. Fstw',i.ii mu r r .iiurr-rnl and niaging Be(cause rnaninade objects of inter-st in imaging radars are
Ia lf inarably s,,mmetrical and their plane or planes of sym-
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B-52 Airplane Space Shuttle

(a)

(b)

(c)

(b) (c)

id)

Fig. 3. Examples of projection images of two test objects.
(a) Co-polarized image (b) Cross-polarized image. (c) Polar-
ization enhanced image. (d) Symmetry enhanced image.

(d)

Fig. 2. Results of microwave diversity imaging of a 170: ) features of the test objects used are delineated clearly in
scale model of the space shuttle. (a) Object shown mounted correct geometrical relation and relative size enabling quick
on azimuth positioner (turntable) at an inclination angle 0 recognition of the scatterer by the eye-brain system. The
= 301, magnitude of (b) co-polarized and (c) cross-polarized image resolution achieved is of the order of 2 cm employing
Fourier space slices taken. (d) Polarization and symmetry-
enhanced projection image. (In (b) and (c), radial coordinate a (16-17)-GHz spectral window. It is worth noting that all
represents frequency f and angular coordinate represents images are naturally edge enhanced because of the spec-
azimuthal angle o, (6 _s f S 17) GHz in 128 frequency steps ular nature of microwave scattering from smooth flat sur-
and 0 -5 -< 900 in 128 angle increments.) faces of the objects tested.

The quality and edge-enhanced nature of the microwave
metry can be inferred from their heading, symmetrization diversity imagesobtained above suggest they arewell suited
can be used to enhance the image further. As simple a con- for automated pattern recognition by a machine, especially
cept as it is, symmetrization is a powerful tool developed since the TDR technique results in images that are always
in our work to exploit the afinity of the eye-brain system centered within the image plane. This may be useful in cer-
in recognizing symmetric patterns (e.g., ink blots employed tain situations. But when a human observer (the ultimate
in cognitive experiments). In certain instances, poor images in pattern recognition systems) is available to analyze and
that were hardly recognizable became meaningful and rec- recognize the image, the benefit,, of automated recognition
ognizable after symmetrization. Symmetrization of the of the image become questionable. Moreover, conven-
polarization enhanced images in Fig. 3(c) about the vertical tional pattern recognition works best when a good image
line of symmetry running through the fuselage was per- is available and may talter when the image is incomplete

formed digitally leading to the polarization and symmetry or the amount of available information about the oblect or
enhanced images shown in Fig. 3(d). The image shown in thetarget is insufficient for imageformation. Ofcourse, this
Fig 2(d) was polarization and symmetry enhanced in the is exactly the challenge in practice, namely target recog-
fashion described. Also, all images shown were actually nition from sketchy (partial andior noisy) intormation which
magnified in the vertical direction bya factor l/cos6 = 1.155, when taken by itself would not be sufficient to form a rec-
0 being the inclination angle at which data was acquired, ognizable image. What is needed therefore is an automated
in order to obtain a properly scaled projection image of the recognition algorithm, of the kind described beloss, that
scattering centers as they would be seen for example, in a can identify objects or targets even when the asailable
top view of the test object shown in Fig. 2(a). It is seen that intormation is sketchy.
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Among its many atounding information processing wave s( altering data is placed first in a format suited for
capabilities, such as robustness and fault tolerance, the neural-net processing before the above associative mem-
brain is also able to recognize objects from partial infor- ory function is activated, as will be detailed later. Optical
mation. We can recognize a partially obscured or shad- implementations of neural nets (see, for example, [9] and
owed face of an acquaintance or a mutilated photograph 1101) are attractive because of the inherent parallelism and
of someone we know with little difficulty, and in reading massive interconnection capabilities provided by optics,
text we are easily able to fill-in for misspelled or mistyped and becauseof emergent optical tet hnologiesthat promise
words. The same is true with understanding spoken lan- high resolution and high-speed programmable spatial light
guage. The brain has a knack for supplementing missing modulators (SLMs) and arrays of bistable optical devices
information. Capitalizing on this observation and on our (optical decision making elements) that can facilitate the
knowledge of neural models and their collective compu- implementation and study of large networks. Optical
tational properties, a study of "neural processing" for implementation of a one-dimensional network of 32 neu-
recognizing microwave objects from partial information rons exhibiting robust content-addressability and associ-
was undertaken. Details and results are given in the next ative recall has already been demonstrated to illustrate the
section. above advantages [10]. By robust we mean fault tolerance

and the ability to correctly recall from partial input data
which may also contain errors. Byone-dimensional we mean

Ill. AUTOMATED TARGet RECOGNITiON BASE D ON MODELS that (in the architecture used there), the neurons are
OF NEURAL NETS deployed on a line. Two-dimensional arrangements of neu-

Neural-net models and their analogs furnish a new ronsarealsopossibleandtheseareofinterestbecausethey
approach to signal processing that is nonlinear collective, are suitable for the processing of 2-D image data or 2-D
robust, and fault tolerant. These models are highly stylized object representations directly as described below, and
versions of biological neural nets in which neurons act as offer a way for optical implementation of denser networks.
decision-making elements and the weights of intercon- In the remainder of this section, we will discuss content
nections between them represent the stored information addressable memory (CAM) architectures based on parti-
or memory. A neuron receives exitatory and inhibitory tioning of the four-dimensional memory or interconnec-
inputs from other neurons and decides to fire, sending its tion matrix T,,kl encountered in the storage of 2-D entities.
own signal in the form of a train of impulses to other neu- A specific architecture and implementation based on the
rons, or not to fire, depending on whether or not the sum use of partitioned unipolar binary(u.b.) memorymatrix and
of the input signals to the neuron exceeds or not a pre- the use of adaptive thresholding in the feedback loop rel-
scribed threshold. The rate of firing (spike frequency) as a evant to the treatment given below have been described
function of the sum of inputs and threshold value repre- elsewhere [23]. The use of u.b. memory masks greatly sim-
sents the transfer function or response of the neuron. The plifies optical implementations and facilitates the realiza-
transfer function is usually highly nonlinear, making a tion of larger networks (1O'-104 neurons). Numerical sim-
neural net in essence a nonlinear multidimensional dynam- ulations of the use of such 2-D networks in the recognition
ical system with very rich phase-space behavior. A step of dilute point-like objects similar to those arising in radar
function response is assumed for the neurons in the treat- and other similar remote sensing imaging applications show
ment here and discrete evolution of the state of the net in that diluteobjects posea problem forCAM storage because
time, taken as an iteration number, is adopted. This results of the small Hamming distance between them. The Ham-
in a neural net with binary neurons (neurons firing or not ming distance between two binary vectors or matrices of
firing). The state vector of such a net consisting of say N the same dimension is the number of bits in which they
neurons, is represented then by a point in the N-dimen- differ. We show that coding in the form of a sinogram rep-
sional phase-space of the net falling on the vertix of a hyper- resentation or feature space of the dilute object can remove
cube and the behavior of the net can be visualized as this limitation and leads to recognition from partial versions
stepped motion of the state vectors in phase-space over the of the stored entities. The advantage of this capability in
verticies of the hypercube. The specific phase-space tra- super resolved recognition of radar targets, where the prin-
jectory of a net depends on the weights or connectivity ciples and methodologies of microwave diversity imaging
matrix, the neurons response and their threshold level, on described earlier are employed to form sinogram repre-
initial state of the net, and on any external input signals the sentations that are compatible with 2-D CAM storage and
neurons receive besides input signals from other neurons. interrogation, are discussed. Super-resolved automated
The recipe used below for storing information in the net recognition of scale models of three aerospace objects from
produces fixed points in phase-space of the net that act as partial information that can be as low as 10 percent of a
attractors for initial states that fall within their basins of learned entity is demonstrated employing hetero-associ-
attraction; this operation represents the associative mem- ative storage and recall where the recognition outcome is
ory or content addressable memory attribute of such net- a word label describing the recognized object. The treat-
works and their ability to supplement missing information ment here is similar to one we have given elsewhere 1231.
that will be elaborated on below. The dynamical phase-
space behavior sketched above is what distinguishes the A. Two-Dimensional Neural Nets
neural-net processing (neuromorphic processing) para-
digm from other approa( hes to signal processing and is the Storage and readout of 2-D entities in a content address-
underlying basis for the new approach to target identifi- able or associative memory is described next. Given a set
cation from partial information we present in this and sub- of M 2-D bipolar binary [ 4- 1, - 11 patterns or entities v,
Sequent se(tions. In this approach, the measured mi(ro- m = 1, 2, - M each of N x Nelements, i.e., N x N bipolar
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binary matrices, these can be stored in a manner that is a initializing matrix b 7". This iterative proess des(rihes
direct extension of the outer product storage formula for motionof the state "vector"of this2-D net in itsphase-space
1-D entities [31], [9], [10] as follows: For each element of a and can be viewed as a multidimensional, nonlinear, dis-

matrix, a new N x N matrix is formed by multiplying the crete, dynamical system describing the net's evolution from
value of the element by all elements of the matrix including iteration to iteration. Architectures for optoelectronic
itself taking the self product as zero. The out(ome is a new implementation of the auto-asso( iative storage and re( all

set of N 2 binary bipolar matrices each of N x N elements. process described above based on partitioning the 4 D
A formal description of this operation is interconnection matrix in an array of N x N submatrices

each of N x N elements have been described in detail else-

T = v, Vk i,,k, =1 , 2, ,N (1) where [23].
0 i~k,j=I B. Sinogram Representation and Hetero-Associatlve

which is a four-dimensional matrix. An overall or composite Storage
synaptic matrix or connectivity memory matrix is formed
then by adding all 4-D matrices Tb,' i.e., Sinograms are object representations encountered in

ki, tomography [25], (26]. In simple terms applicable to micro-
T -,l Y, min. (2) wave scattering, the sinogram of a scattering object is a

M Cartesian plot of the measured relative range or differential

This symmetric 4-D matrix has elements that range in value range of scattering centers on the object versus aspect
between - M toM in steps of two and which assume values angle. A scattering center is defined as any structural detail

of + land - I (andzeros forthe self-product elements) when on the object that contributes to the measured scattered
the matrix is clipped or thresholded, as is usually preferable field. In our work, the sinogram of a target is formed by

for optical implementations [10], [23]. Two-dimensional uni- measuring the range-profile or differential range of the tar-

polar binary [0 1] entities bi are frequently encountered get as a function of the aspect angle and fixed elevation
in practice (e.g., binarized images and object representa- angle 0 (see Fig. 4(c)) and by arranging the modulus of the
tion). These (n be transformed into bipolar binary matri- measured range-profiles as vertical line intensity patterns

ces by forming v ,7 (2b ,' - 1), which are then used to side-by-sideas function of aspect angle (for example, range-

form the 4-D connectivity matrix or memory matrix as profiles versus azimuthal angle 0 in Fig. 4(c) at fixed ele-
described before. Also, as in the 1-D neural-net case, the vation angle 0). Sinogram construction is liustrated in Fig.

prompting or initializing entity can be unipolar binary 4 for a planar object consisting of three points of unequal
b , ' , which would simplify further optical implementations
in incoherent light [10], [23]. SINOGRAM GENERATION - PRINCIPLE

Architectures for optical implementation of 2-D neural
nets must contend with the task of realizing a 4-D memory PRnORF IL I r3Y,0li ORAM
or interconnectivity matrix. Here, a scheme is presented ricer. 2

that is based on partitioning the 4-D memory matrix into an .,2 NA

N elements. Thus, a 2-D neural net of N x N = 32 x 32 neu- 2

rons would contain N' interconnections, i.e., over a million NSAMPI

interconnections, which shows why hardware implemen- PuAW PRAii N.#-kTOMAKI SOUARri
tations that use light and optical interconnections rather W AVE 0P A UCLAA SAMPU S

than electronic interconnects are attractive. Provided that

the number of entities stored is not excessive (see below), IR NASUS

the 4-D interconnection matrix thus formed makes the sta- RANG, PROFILE

ble states of the net (attractors in phase-space) identical to Of TARGET) t • OuEiCT TEMN

the entities stored. The maximum number of 2-D entities (a) SPCTRAL WIN"
that can be stored in this fashion without degradation of SWRifST wAVErlcrr

recall is M = N 2/8/nN, which follows directly from the stor- m,

age capacity formula for the 1-D neural-net case [24]. When (b)
initiated from a partial version of a given state, the network
qui klyconverges, in a matter of a few iterations (see below) SINOGRAM GENERATION - EXPERIMENTAL
or time constants of the "neuron," to the stored entity clos- AP9CHOIC CHRAYBr

est in the Hamming sense to the initiating vector or matrix.
This nearest neighbor search of the memory matrix for a TARGC

given entity b!,"o is done by forming the estimate

b -, ) = Zi, ,k, I = 1, 2, '
, N (3)

, - TN TABLE

followed by thresholding to obtain a new unipolar binary
matrix .%hich is used to replace b:,' in (3); the pro( edure 1c)
is repeated to obtain a new estimate or state matrix. This Fig.4. Snogram representation. (a) Sc attering g-ofnerV fr
process is repeated again and again until the state matrix an iduahized planar object. (b) Sinogram. to Sinmplited

or "ve( tor' ( onverges to the stored entity closest to the arrangement for experimental generation of sinogram
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strength. This object is chosen to represent a highly sim- below, in achieving distortion invariant (scale, rotation, and
plified radar target. Every point (or scattering center) of the translation invariant) recognition.
object generates a sinusoidal trace in the sinogram whose In laborator, work, the sinogram representation of a
amplitude is determined by the rddial distance of that point complex.shaped test obiect is obtained as depicted in Fig.
from the center of rotation, whose phase is determined by 4(c), which is a highly simplified version of the measure-
the angular position of that point, and whose brightness or ment system of Fig. 1. The number of range-protiles N.
strength (represented in Fig. 4(b) by line thickness) is pro- needed to characterize the object and the number of sam-
portional to the strength of the scattering center. Note that ples NR within each range-profile are determined by angu-
scatterer 3, whose position coincides with the center of lar and spectral sampling considerations. Thus, tor an object
rotation, produced a zero amplitude line in the sinogram. with maximum extent L, the maximum number or angular
A complete smogram is produced by rotating the object samples in one azimuthal direction is N. - 47rL X,,,, and
3600. It is worth noting that the range-profile of an object the maximum number of samples NR within a range-profile
is independent of its far-field distance from the transmitteri is 'NR 

= N, = 2AfL c, where If is the width of the spectral
receiver (IR) in Fig. 4(a) or Fig. 4(c). The range-profile window used, N. s the number ofrfrequency points, c is the
depends, however, on object aspect and on the spectral velocity of light, and X_ is the shortest wavelength used.
window and polarization used in data acquisition (see Sec- The sinogram of an actual microwave target differs in
tion II-B). appearance from the sinogram of the idealized object

Sinogramsare particularly useful when the object is point- described above in that the intensity or brightness of its
like and sparse or dilute, as is the case in microwave diver- sinusoidal traces changes (fades in and outl with the aspect
sity imaging where the images formed consist ordinarily of or viewing angle because of the anisotropic nature of the
a finite number of isolated scattering centers. Given a set scattering centers on actual targets. Fig. 5 gives an example
of 2-D dilute objects (each consisting of a collection of a of the sinogram of a scale model of a B-52 test object pro-
finite number of distinct point scatterers) and their cor- duced from a slice of its Fourier space (shown in Fig. 5(al)
responding set of associated sinogram representations, the obtained at an object inclination angle ot 6 = 30 (see Fig.
Hamming distances between the sinogram representations 4(c)) employing the measurement facility of Fig. 1. Both
will always be found to be greater than the Hamming dis- intensity and 3-D perspective displays of the resulting
tances between the objects themselves. This is assuming sinogram are shown in Fig. 5(b) and (c), respectively. The
that objects and sinograms are quantized onto the same sinogram shown demonstrzlesclearly how sinusoidal traces
number and grid of binary pixels. The reason for this is that of the different scattering centers fade in and out as a func-
each point of theobject produces a distinct sinusoidal trace tion of target aspect (here azimuth angle o) and how point-
and thus spawns many points in The sinogram represen- like scattering centers such as the tips of eng.nes and fuel
tation. Therefore, if for example) two dilute objects differ tanks (see the B-32 part of Fig. 3(d)) produce more distinct
in only two pixels, their sinogram representation will differ traces than edge-like or extended scattering centers of the
by two sinusoidal traces and. hence, in many pixels. The target. Thus, the sinogram pattern tends to characterize the
increased Hamming distance makes it easier ior an asso- target by its dominant point-like scattering centers that are
ciative memory to distinguish between the sinograms than visible over an extended range of aspect angles. The sin-
todistinguish between the objectsthemselves. This hasthe ogram pattern is a map of the measured relative positions
added attraction of making it less difficult to distinguish between such centers as the target is rotated about a spec-
between similar objects, that is, objects with small Ham- ified axis. Complet2 sinogram representation of a 3-D target
ming distances between them. Sinogram representations involves sinogram maps such as the one shown in Fig. 5 for
also have the advantage ot being useful, as will be clarified all elevation angles 0 of expected encounter. The range of

RIIADS:DE

(c)

fig. S. Sinogram of a 10011 (c ale model ol a B-52 test obtect. (a) Fourier space slice trom
whii h the sinogram *s generated hi IntensitV displav and (c) 3-D perspective drispla% ot
the sinogram. Note broadside and "head on are specified for inclination angle ot is

= 30,
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azimuth angles 0 needed would be confined to those indi- stored sinogram representations were used to initializethe
cated by practical encounter scenarios, network. The partial versions of the stored entities ranged

It is worth mentioning that the alignment of the range- down toa fraction 17 = 10 percent of the full representation.
profiles to produce distinct sinusoidal traces in the range- Here, 7 is the ratio of the number of range-profiles entered
aspect displays (Fig. 5(b) and (c)) is an essential requirement to the total number of range profiles used to characterize
for image reconstruction by back-projection [20]. The align- the object in its sinogram representation. Reliable identi-
ment process also defines the center of rotation or phase fication of the partial sinogram input was found to occur
center of the target, in that had a point scatterer been after one iteration for all entities stored down to 17 = 0.2
located at the rotation center, it would produce a straight confirming convergence to a stable state even when the T,I,
line at constant range in the sinogram. Thealignmentisalso matrix is not symmetrical, as is usually required for con-
equivalent to the TDR procedure referred to in Section vergence [31]. This, and the observed speed of conver-
Il-A and described in more detail elsewhere [8], [21]. Thus, gence, may indicate a difference in the behavior of 2-D nets
formation of a distinct sinogram is not only needed for rep- and their 1-D counterparts whose reason is yet to be deter-
resenting the target but it also an essential step for remov- mined. For 71 = 0.1 or less, successful recall of correct labels
ing the unknown range to the phase center of the target and was found to depend on the angular location of the partial
the removal of undesirable effects associated with migra- data with which the memory is presented. In most cases of
tion of its phase center with aspect. The crispness with 17 = 0.1, the net labeled the partial initializing input cor-
which oneor more sinusoidal traces appear in the sinogram rectly, as illustrated in the AWAC example of Fig. 7, and in
inthisalignment processcan serveasameasureof howwell those cases when it did not do so, it produced a garbled
the unknown range to a common reference point (center and/or contrast-reversed version of a label that resembled
of rotation or phase center of the target) can be compen- one of the other labels (see the B-52 examples in Fig. 7).
sated for in the different aspect looks at the target. Quan- Below 7 = 0.1, the reliability of recall deteriorates rapidly.
tization and thresholding of the sinogram pattern of Fig. 5 However, in nearly all simulations with partial input, failure
into a grid of N x N binary pixels yields the sinogram rep- of the net to label the entry correctly was manifested by
resentation b,, of the target that is suitable for the associ- convergence onto a garbled and/or contrast-reversed ver-
ative storage and recall process described in Section IlI-A. sion of one of the identifying labels. This behavior could
In the top row of Fig. 6 are shown the sinogram represen- be usefully interpreted as the net inr+rating it has insuf-

ficient information and that more information is needed
before a decision (identification) can be made and that oth-

data I data 2 n dAa3
rnB52 - - 0 [ J SPACE erwise no decision should be made.

MA SHw^1I=LE Rapid "one-shot" convergence to correct associationscale *Ca cal
I !oo 1 172 exhibited above even with small values of 7 means, in the

. o o r go o 9 o language of dynamical systems, that the fixed point-attrac-

daa data 2 d"3 tors (stored associations) in the phase-space of the net are
W F strong and they possess large basins of attractions.

LABEL LABEL LABEL The results above illustrate the potential of neuro-I 2E 3 morphic processing in object identification from partial sin-
Fig. 6. Hetero-associative storage. Sinogram representa- ogram information (object representation). What is note-
tions (top) and associated word labels (bottom) of three worthy is that the net in those simulations performed the
aerospace test objects. functions of storage, processing, and labeling simulta-

neously, which is the hallmark of distributed collective pro-

tations of scale models of three aerospace test objects cessing. The performance of such nets is also known from
(B-52, AWAC, and Space Shuttle) interpolated and digitized otherwork to be robust and faulttolerant. In an actual hard-
onto a grid of 32 x 32 binary pixels. These are treated as a ware implementation of a prototype neural net of 32 neu-
learning set and stored hetero-associatively rather than rons, correct associative recall from partial information
auto-associatively by replacing vs. in (1) by r ', where k, continued to take place even when nearly 20 percent of the
I = 1,2, •,32; m = 1,2, 3, and where rT ' are bipolar binary neurons were disabled [10]. The binary nature of the sin-
versions of the abbreviated word labels shown in the bot- ogram representation resulting from interpolation and
tom row of Fig. 6 with which the three test objects are to thresholding the raw sinogram data (e.g., of Fig. 5(a)) is
be associated. In this fashion, a nonsymmetric 4-D hetero- expected to impart to it some immunity to noise present
associative memory or connectivity matrix T,,k1 is formed in in the measured data. To apply the method in practice, sev-
which the associations between the three sinogram rep- eral issues related to the generation of sinogram libraries
resentations and their word labels are embedded. The con- and to the ability to determine the aspect angles for which

nectivity matrix is used in the numerical simulations data is collected must be considered. These are briefly

described next. addressed in the following section.

IV. RESU'_TS V. DiscussioN

Numerical simulations of interrogating the hetero-asso- Methodologies of microwave diversity imaging studied
ciativelv formed memorv matrix with complete and partial extensively at the Electro-Optics and Microwave Optics
versions of the three entities (sinogram representations) Laboratory of the University of Pennsylvania for more than
stored in it following the procedures of Section Ill-A were two decades provide the basis for a new generation of 3-D
carried out. Complete and partial versions of the three tomographic imaging radars that can furnish shape esti-
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mates of the 3-D distribution of scatteringcenters on remote "taught" to an associative memory or a neural network that
aerospace targets with near-optical resolution. Arrays of can be used to recognize partial sinogram representations
broad-band coherent transmitter-receiver pairs employing of actual targets collected by actual broad-band coherent
the TDR technique can be used to access the Fourier space radar systems. Realization of this scenario entails careful
of remote scattering targets. Resolution in such systems consideration to scaling issues and to the principles of
depends on the angular and spectral windows, utilized for "electromagnetic similitude" [28] in order to ensure that
data acquisition and on polarization diversity. Unprece- the sinogram representations collected using scale models
dented centimeter resolution has been demonstrated in in an anechoic chamber RCS measurement facility resem-
projection rather than 3-D images of scale models of such ble as closely as possible those of the actual targets. This
targets employing gigahertz spectral windows, wide angu- and other issues such as "fluctuations" of echos from actual
lar windows of -/2 [Rad.], and image enhancement by polar- airborne targets because of flexing, deformation, or wind-
ization diversity and symmetrization. Image-reconstruc- buffeting, the minimum number of looks (range-profiles)
tion algorithms based on Fourier inversion or by filtered needed to represent an actual target i.e., characterize it for
backproiection are equallyapplicabieand have bt:en found all practical encounter aspects; the number and size of
to yield comparable results. The use of spectral, angular, neural models needed for the identification of agiven num-
and polarization degrees of freedom in such imaging sys- ber of targets, together with the use of sequential storage
tems has the advantage of increasing the information con- and recall, and the self-organization and learning capabil-
tent of theobject-scattered wavefields. This enblesa broad- ties of neural nets must be addressed before the neuro-
band, polarization-selective array aperture to acquire more morphic approach to target identification can find practical
information about a scattering oblect than it could have application. The latter capabilities have the potential of pro-
monochromatically (at a single frequency) or at a single ducing improved neuromorphic target recognition
polarization. A useful tradeoff between spectral and angu- schemes that can learn theunderlyirrg structureof theasso-
lar degrees of freedom exists. It enables considerable thin- ciations presented to them with generalization (i.e.. non-
ning of the imaging array. Because angular degrees of free- rote learning) [30]. These issues and others are currently
dom are associated with the number of elements or stations under investigation (32]. The ultimate aim of this work is to
in the array, their replacement with less costly spectral achieve reliable distortion independent recognition from
degrees of freedom, associated with the number of fre- onelook. lnthis regard, weofferthefollowingfinalremarks.
quency points used in data acquisition, can cut cost and Because for fixed spectral window, the range profile of a
lead to significant improvement in cost effectiveness, target is basically independent of range and depends only

Despite these attractive attributes of microwave diversity on target aspect, the prospect of achieving recognition from
imaging systems, there are circumstances when the base- a single look (single range-profile) would mean complete
line (physical or synthetic) required to realize the wide distortion-independent identification, that is, recognition
angular windows needed to achieve high resolution is not independent of target range or aspect. How can this be
available or is not sufficient to form a recognizable image. done? One can conceive of the following approach or sce-
One has to rely then on means of target identification other nario that is being considered in our work, [33], as a direct
than image formation and analysis by the eye-brain system. extension of the ideas given in this paper. In this approach,

The "neuromorphic" or "brain-like" processing one seeks neural-net structures and storage recipes that
approach to super-resolved, robust, and fault tolerant rec- can produce prescribed controlled periodic attractors.
ognition described in the preceding section is not only Periodic attractors are represented by closed trajectories
intellectually attractive, providing for the first time a con- in phase-space. Thus, we envision a net in which we can
nection between neural nets and applied electromagnetics, specifyand obtain the next stateof the net given the present
but could also obviate the need for large expensive imaging state in a closed or open sequence of states to enable stor-
array systems (of the type needed in microwave diversity age and recall of prescribed sequences of state vectors
.maging systems and other more conventional approaches instead of the "fixed point" phase-space attractors encoun-
to radar target imaging) and can avoid the time spent for tered in the above hetero-associative storage and recall
aperture synthesis for example by target motion in ISAR work. Each periodic attractor in the envisioned net would
imaging. The implication of this for microwave (and other) consist of a sequence of state vectors, representing, for
automated object-identification systems can be far reach- e-ample, thresholded versions of angularly adjacent range-
ing and is sufficient motivation to search for a new gen- profilesof a target, with each sequence containing an extra
eration of automated neuromorphic radar and sonar rec- lable vector inserted to identify the target associated with
ognition systems, that can identify remote targets from only that sequence or periodic attractor. A periodic attractor of
a few looks (27]. Many of the findings of the work reported the net associated with a given target, would be triggered
here also carry over to the duilidill i ,,d... .:,;i;on an'.d when the net is initiated by either an initial state that coin-
recognition for robotic applications. The problem then is cides with one of the constituent thresholded range-pro-
however more complex because objects of interest are not files of that attractor or by an initial state that is sufficiently
found in perfect isolation as is the case in recognizing close to any one of the constituent range-profiles in the
aerospace targets. In the radar-targer identification sce- Hamming sense. No matter which thresholded range-pro-
nario, suitable target representations (signatures or feature file is used to initiate it, the net would eventually end up
spaces) such as the sinogram representation described cycling through the associated periodic attractor and,
above would be generated cost effectively from scale hence, through all other associated range-profiles, includ-
models of targets of interest in a controlled anechoic chain ing the label state vector whose occurrence we assume can
ber environment employing measurement systems, of the be isolated and used to trigger an identification marker of
type we have des( ribed. The representations would be the target, thus identifying it from the single available ini-
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Echo Inversion and Target Shape Estimation by
Neuromorphic Processing

NABIL H. F. .RHAT AND BAOCHENG BAI

University of Pennsylvania
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Abstract-A neural net processor is described for echo inversions and target shape estimations from incomplete
frequency response data. The processor accomplishes the inversion and estimation by minimizing an energy
function which bears information about the measured data, as well as the relationship between the target shape
function (image) to be reconstructed and its frequency response. An iterative algorithm is developed for the
processor to minimize its energy function to give the desired image as its neural state outputs. Successful digital
reconstructions with the neural net processor using microwave radar imaging data are presented and an opto-
electronic implementation of the processor is described. Heuristic extension to make the processor more neu-
romorphic by introducing nonlinearity is discussed and digital reconstructions with this extension are shown;
these reflect noticeable improvement in image quality.

Keywords-Neural processing, Radar imaging, Recovery from partial information, ll-posedness, Regulari-
zation, Opto-electronic architectures.

I. INTRODUCTION brain's ability to process sensory data is the ease with

Neural net models and their analogs (Ballard, 1986; which it solves computationally complex problems,
associated for example with vision, that are basically

Hopfield, 1982) represent a new approach to collec- inverse problems which are known to be computa-
tive signal processing that is robust and fault tolerant tionally vexing because of their il-posedness (Tik-
and can be extremely fast. These properties stem honov & Arsenin, 1977). When processing sensory

directly from well recognized information processing data, te brain can still perform its tasks successfully

capabilities of the brain. Although the brain is not ev e whe n can s ti on its task s partal
aseven when the information it is presented is partialaster, go isknwn athet henitcomest operations (or incomplete) and contains errors. Based on those
puter, it is known that when it comes to operations remarkable information processing capabilities of
such as association, categorization, classification, neurons in the brain, a neural net processor is studied
feature extraction, recognition, and optimization, it and reported upon here in the context of image re-

can outperform even the most powerful up-to-date constructions fromh e e data.

computers. Collective information processing in the the p rom ome e nti r
brai maes se o th masiveintrconectvit of The problem of image (or object function) recon-

brain makes use of the massive interconnectivity of struction from limited frequency data arises in many
neurons (the decision making elements) of the brainand
and their ability to store information as weights of sonar imaging. A one-dimensional object function
links between them. The brain's amazing capabilities f(r) of limited extent possesses a frequency response
in analyzing sensory data along with its complex (Four ie d extens ve e e ntie

thought and intelligent reasoning ability makes it an (Fourier transform) F(p) that extends over the entire
intriguing model for smart sensing and automated frequency space. In practice, the frequency responserecgnint in smo fr s tesesing aF(p) can only be measured over a finite region of
recognition systems. An interesting aspect of the the frequency space (p-space). The traditional ap-

proach by Fourier inversion of the measured re-

sponse Fd(p) yields an imperfect estimate f(r) of the
This research was supported by Army Research Office and object function because values of F(p) outside the

the Jet Propulsion Laboratory. frequency measurement window are taken to be zero

Requests for repnnts should be sent to Nabil H. Farhat, Uni- whic voae inowde triev o bzro

versity of Pennsylvania. The Moore School of Electrical Engi- which violates a priori knowledge. Retrieval of f(r)
neering. Electro-Optics and Microwave-Optics Laboratory, from Fd(p) is also known to be an ill-posed problem
Philadelphia, PA 19104. in the sense that noise contamination and incom-
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pleteness of the measured response F( p) can result p
in large fluctuations in object function reconstrue- Y
tions. The neural net processor to be discussed a_-
complishes the reconstruction from incomplete
frequency response data by minimizing an energy
function which bears information about the mea-
sured data, the underlying (Fourier) relationship be- / -"-
tween the object function and the measured data. X
The energy function is set up in such a way as te Pi P2
agree with a priori knowledge and overcome the ill-posedess ofith probknole. and teraverrthm f- FIGURE 1. The p-space data collection in microwave Imag-posedness of the problem. An iterative algorithm for Ing.

the processor is derived and its performance evalu-
ated numerically in the reconstruction of radar range
profiles from realistic data will be presented. The ing measurement; to achieve this goal in three di-
realistic data are collected in a broad-band micro- mensions for a 3-dimensional (3-D) object in reality,
wave cross-section measurement facility employing the frequenV scattering measurement has to be car-
microwave diversity techniques in which angular, ried out in te 3-D Fourier or frequency space of the
spectral, and polarization degrees of freedom are object. But measurement over 3-D manifold in Four-
combined to extract maximum information about the ier space is impractical. On the other hand, the 2-
scattering object. Therefore all the following discus- dimensional (2-D) frequency space grid shown in Fig-
sion with regards to imaging %ill be relevant to mi- ure 1, which represents a slice of the 3-D frequency
crowave diversity radar imaging. space, can be easily accessed with practically feasible

The implementation of the neural net processor radar systems (Farhat et al., 1985a). When inverted,
can be achieved opto-electronically. The massive this 2-D frequency space measurement gives rise to
connectivity and parallelism of the neural net pro- a 2-D projection image of the 3-D object and with
cessor can be realized by optics while the decision sufficiently wide angular windo. (range of aspect
making and any required gain can be realized by angles) A0 enough image information for identifi-
electronics. The detailed implementation scheme of ca'ion of the object can be obtained as will be seen
the neural net processor will be discussed. Finally, in the results shown later. The 2-D image can be
heuristic extension of the neural net processor to reconstructed from the frequency measurement over
include nonlinear neural mapping, which makes it the frequency space grid in Figure 1 by invoking the
more neuromorphic, will be discussed and the re- filtered back-projection theorem (Farhat, Ho, &
construction of microwave diversity radar image Chang, 1983) as follows: first, 1-dimensional (1-D)
based on this extension will also be given, inversion along the radial direction with respect to

the variable p for a given aspect angle 0 is done to

II BACKGROUND obtain the so called range-profile which bears infor-
mation about the projection of the scattering centers

In microwave diversity radar imaging (Farhat, Wer- of the 3-D object on the line of sight of the inter-
ner, & Chu, 1985a) as well as in many other radar rogating radar or a radar cross-section measurement
imaging applications, such as synthetic aperture ra- system for the given aspect angle 0. Then, the 2-D
dar, etc., the frequency response of an object (or image is reconstructed by coherently summing the
target) to be imaged can be accessed only for a lim- filtered back-projected value (Farhat et al., 1983) of
ited frequency band and a limited range of aspect every range profile for all aspect angles taken in the
viewing angles, because of instrument limitations and imaging process (see Farhat et al. (1983) for more
other practical reascas. The data in the microwave details).
imaging system described in Farhat ct al. (1985a) are The 2-D object function to be reconstructed
collected over a polar format or polar frequency grid should reveal the size and shape of the scattering
depicted in Figure 1. Here p. and p, are Cartesian target. Such a 2-P object function can be found un-
coordinates of spatial frequency space (p-space); pi der general approximations. There are two approx-
and p, are the start and stop spatial frequencies, imations involved in high resolution microwave
respectively, associated with the start and stop fre- imaging work. One is the physical optics approxi-
quencies w: and w: employed in gathering the fre- mation, which requires the wave-length of the mi-
quency response data: 01 is the start viewing angle crowave used for imaging be smaller than the
and 02 the stop ,iewing angle. and A0 is the total characteristic size of the object, and the other is the
viewing angle. The purpose of microwave imaging is Born approximation, which ignores multiple scatter-
to extract information such as the size and shape, ing at the object (Farhat et al., 1985a; Ruck, Barrick.
about a scattering target through microwave scatter- Stuart, & Krichbaum, 1970). If the imaging fre-
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quency hand (spectral window) wE [w1, wJ is chosen f(r) from F(p) is ill-posed in the sense that small
to satisfy both approximations, it can be rigorously change in the measured frequency response Fd(p)
shown (Chan & Farhat, 1981) that the frequency can alter radically the estimate f(r) of the object
response F(p, 0) (or F(w, 0)) corresponds to a real function as a consequence of noise contamination
object function when the object is perfectly con- and incompleteness of F(p). This motivates the
ducting or when it is composed of a lossless dielectric, study for a new method to achieve fast and robust
We will concentrate on this kind of object; however, reconstructions satisfying a priori knowledge.
the method presented can be extended to other kind
of objects. III. RECONSTRUCTION BY

From the 2-D image reconstruction procedure NEURAL PROCESSOR
mentioned earlier, it is seen that the 2-D image is
just a projected summation of range profiles over the A neural net processor is studied to solve the prob-
0 direction and this summation process is, of course, lem of object function reconstruction from incom-
well-posed (Hadamard, 1923, Tikhonov & Arsenin, plete frequency responses. The neural net processor
1977) and can be done to the desired accuracy. models the collective computational behavior of neu-
Therefore, if the range profile for every aspect angle rons in human brains and is set up to be formed of
can be retrieved correctly, the 2-D image will be massively interconnected "neurons" with parallel
reconstructed satisfactorily. The issue is then how to processing capability. The problem to be solved by
reconstruct the range profile for every individual the neural net processor is formulated in terms of
aspect angle satisfactorily. Since the range profile desired optima (usually minima). To compute solu-
reconstruction for a given aspect angle is a 1-D prob- tions to the optimization problem, the connectivities
lem, we will use scalers r and p to represent points (synapses) of the net form an energy space to ap-
in object domain and Fourier space or p-space, re- propriately represent the optimization problem so
spectively, and by object function we will be referring that the net will rapidly converge to its energy min-
one range profile, unless it is otherwise specified as ima corresponding to the minima of the problem
a 2-D or 3-D object function in the following analysis. when the bias input representing the available in-
The traditional approach to reconstructing a range formation is fed into the net.
profile is to employ the Fourier inversion method. The reconstruction of range profile for an indi-
Fourier inversion of the measured frequency re- vidual aspect angle in microwave diversity imaging
sponse Fd(p) yields an estimate of the object func- is a 1-dimensional problem. For a given aspect angle,
tion, since the frequency response of the range profile (or

1-D object function) is known for a finite frequency

f(r) = Fd(p)eP'dp = P, F(p, )e'P'dp. (1) band and to reconstruct the original object function
P from this kind of knowledge of the frequency re-

sponse is an ill-posed problem, 'he energy function
Here, the following assumption about the measured for the neural net is set up by the following consid-
data has been made, erations:

Fd(p) F(p,0) forws p PP 2 andfixed 1. The Fourier transform of the reconstructed object
10 -%herwise function should agree with the known (measured)

For the Fourier inversion method, it is assumed frequency response over the given frequency band
that the frequency response F(p) outside the mea- [PI, P21 in the "best way";
surement band [PI, p2J is zero and consequently the 2. the ill-posedness will be remedied by using re-
object function f(r) estimated from the finite mea- gularization (Tikhonov & Arsenin, 1977).
surement band will generally be complex. Tne as-
sumption and the result viojate a priori knowledge Accordingly, the following function is chosen as the
that an object function of finite extent in practicc energy function,
has a frequency response of infinite extent and that H(f) = Ild(p) F(p)11' + aR(f) (2)
the object function to be reconstructed is real. Fail-
ure of Fourier inversion in eqn (1) to satisfy a priori where, f denotes the object function to be recon-
knowledge can be traced to the ill-posed nature of structed and is a state vector of the net; Fd(p) the
the inverse problem (Hadamard, 1923; Tikhonov & frequency response from measurement over [p, pJ;
Arsenin, 1977). In practice, the measured frequency F(p) the Fourier transform of f, and 11'11 a norm
response is contaminated more or less by noise, and defined on the frequency space C D F(p). It is seen
also the measured response Fd(p) is only part of the that the first term in eqn (2) does reflect the fitness
Fourier transform of the object function f(r) to be of the reconstruction with the known data in the
reconstructed and Fd(p) is incomplete. Retrieval of frequency domain, that is, the first term vanishes if
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Fd(p) = F(p). The term R(f) in eqn (2) is a re- kernel. The term 1,, in eqn (4) is the external input
gularization operator on f to overcome the ill-posed- related to the measured data and is given by
ness of the problem and it is chosen by considerations %
of the object function to be reconstructed and a priori 1, = 2Re [_ F1(i)K.]
knowledge. Since functions representing physical ob-
jects in microwave diversity imaging are usually con- and is identified as the real part of the complex range
tinuous and cannot have abrupt discontinuities, so profile generated by Fourier inversion of the mea-
Tikhonov's regularization functions (Tikhonov & sured frequency response F,; X in eqn (4) is defined
Arsenin, 1977) and their similar forms for maintain- as the "gain" of the nth neuron in the net and is
ing smoothness of the reconstruction will be used chosen as to satisfy,
and represented by R(f); one of the Tikhonov's re-
gularization functions used in our study is, 1 + [Tkk - a(Ar+ 1 + A2 >0 (6)

X I, Ar )]

R(f) = {if(r) + [f'(r) 2}dr. (3) in order to make 11(f) decrease as f changes. The
iterative neural net algorithm in eqn (4) has been

The constant ac in eqn (2) is called the regularization digitally tested with realistic data Fd for scale models
parameter to control the trade off between fitness of aerospace test objects collected in a microwave
(small a) and smoothness (large a) of reconstruc- imaging facility at the University of Pennsylvania.
tions. One of the models used is a B-52 airplane. The fre-

When the Fourier transform F(p) is expressed in quency response data are collected over a frequency
terms of the object function f, the energy function window from 6(GHz) to 17(GHz) and a 900 angular
H(f) in eqn (2) will only be a function of the variable viewing window which extends from the broadside
f, since Fd is the measured frequency response and to head-on of the airplane. Over the 90' viewing
is known. An iterative algorithm for the neural ne* window, there are totally 128 looks (views) taken
processor is derived by e, luating dH(f)Idf(m) to and the range profile for each view is reconstructed
find the energy change AH due to the change of the from the measured frequency response data using
mth sample of f or the change of the state value of the neural net processor expressed by eqn (4); the
the rnth neuron in the processor. To find the minima 2-D object function is finally obtained by the back-
of H(f), H(f) is desired to decrease as f changes projection algorithm which coherently sums the fil-
and accordingly the update neural net iterative equa- tered back-projected value of f for all the views in
tion (see appendix for detail derivations) for the the proper angular orientations over a rectangular
(j + 1)th iteration in terms of the jth iteration is image plane grid (Farhat et al., 1983). Shown in Fig-
found as, ure 2(a) is the B-52 airplane model used; Figures

2(b) and 2(c) show the 1-D range-profiles recon-
f"(m) structed by the FFT algorithm and the neural net

+ } processor, respectively. Shown in Figure 2(b) is the
+ I 2Re[T,,,,,fM(m') + 1. - S, (4) modulus ot the reconstructed complex range profile

while shown in Figure 2(c) is the intensity of the real
where S, is viewed as a regularization related adap- range profile. The 2-D object image reconstructed
tive threshold and for the regularization function in by the traditional FFT and filtered back-projection
eqn (3), it is given by. is shown in Figure 3(a) and that obtained by the

neural net processor followed by filtered back-pro-
2c f (tn) l +A,)Ar jection is shown in Figure 3(b). Since the airplane is/ r illuminated from only one-side of the fuselage, im-

1 ages initially reconstructed are brighter on the illu-[A~f J(m - 1) + A~fl(mn + 1)1] (5) minated side of the fuselage and both images shown

with Ar being the sampling interval in the object in Figures 3(a) and 3(b) are the symmetrically en-
space 5 D f and A, and A, given constants. Re[ T,,,,] hanced images of the initial reconstructions aboutspe c s Rthe symmetrical axis of the airplane-the fuselage.
is the real valued interconnectivity matrix that rep- It is worth noting that most man made aerospace
resents the underlying Fourier transform and is given It cs oth on e or more a n m e a ndby objects possess one or more axis of symmetry and

these are usually determined from object bearing.
Re[T.,,, = -- 1Re KK,, Comparing :he reconstructions by the two different

[,, methods, the following observations can be made.

with N being the total number of measurement sam- . Reconstruction by the neural net processor has
pies in the frequency domain and K,,, the Fourier lower back-ground noise level which can be helpful
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S-52 TEST OBJECT
119o

90 RANGE PROFILE RECONSTRUCTED RANGE-PROFILE RECONSTRUCTED

BY ;FT BY NEURAL NET PROCESSOR

63 -FUSELAGE FUSELAGE
cm

TANK E NGIES TANK ENCINE]NK , J

/ / ENGINE

(a) (b) (c)

FIGURE 2. (a) B-52 airplane model; (b) reconstruction by FFT; (c) reconstruction by neural net processor.

in practical applications where signal to noise ratio tions with its output intensity, the real valued
is low and leads to improved images. function f" 1(m) in microwave diversity imaging can

* Reconstruction by the neural net processor is ob- be handled by using separate LEDs. to code positive
tained by assuming that the object function is real and negative values of f('(m). The interactions
and this makes it easier for opto-electronic imple- among neurons are provided by broadcasting the
mentations. neural states, that is. the outputs of the LEDs.

through the 2-D interconnectivitv matrix mask

IV. OPTO-FLECTRCNIC IMPLEMENTATION Re[TI.,,] and the output (the activation potential) of

OF NEURAL NET PROCESSOR each neuron is picked up by the photo-detector (PD)
array. The term I,, that represents the measurement

Optical processing systems offer potential for ultra data and the adaptive threshold S,, that overcomes
fast speed and means for realizing parallel processing the ill-posedness of the problem can be computed
as well as massive interconnections among processing digitally and injected into the system either elec-
elements. Therefore, optics can be used for the im- tronically or optically as shown, but completely an-
plementations of neural net models (Farhat. Psaltis, alog schemes for computing these terms are also
Prata. & Paek, 1985b) for computing and informa- possible (an example of analog generation of S,, is
tion processing, while the decision making elements given below). The neural "'gain" X(X < 1) can be
in the implementation can be realized electronically realized with an optical or electronic attenuation.
at present. The architecture for an opto-electronic The resultant output from each attenuator would be
implementation ot the neural net iterative algorithm used to drive the LED array which will in turn update
expressed in eqn (4) is shown in Figure 4. The neural the neural state to f - (m) for the (I I )th iter-
state vector f in the implementation is represented ation.
by the output of the light emitting diode (LED) ar- The regularization factor S,, is adaptively gener-
ray. Although LED can only represent positive func- ated in analog fashion according to the neural state

(a) (b)

FIGURE 3. (a) 2-0 image reconstructed by FFT; (b) 2-D image reconstructed by neural net processor.
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- S.
(ELECTRONIC

S, INJECTION)

(OPTICAL A

* *I (OPTICAL XNCTION)

#(A(-)_ E 2Re.T"r..,U1(,I

FIGURE 4. Opto-electronlc Implementation.

in the net. Shown in Figure 5 is an optical shuffle be multiplied with the proper terms through optical
scheme for doing this. The input to this generating (or electronic) multipliers.
system is the neural state array f(')(m) in Figure 4
and the output can be fed into the neural net iterative
processor shown in Figure 4 either electronically or V. HEURISTIC EXTENSION
optically (e.g.. through the vertical LED array Sm.). By examining the neural net iterative algorithm ex-
The anamorphic imaging systems, L1 and L-2 , are pressed in eqn (4), the overall activation potential
used to smear LEA (light emitting array) output rep- of the ruth neuron in the net can be written as,
resenting the neural states vertically over the beam

spitrcube (BSC). Properly arranged, the tilted u,. X W,..mvm, - Om, + Xl.m (7)

mirrors TM1 and TMz can reflect the lighi from ,

the BSC to PDA1 to form the term [f('I(m - 1) + where,
f~Im+ 1)], while the mirrors M1 and M2 can reflect

the light from BSC to PDA2 to form the term f')(m). Un' = f(m')
The constants (1/Ar) and [Ar + (2/A~r)] shown in W,.. = B,.+2~eT.,.
Figure 4 are obtained by setting A1 = A 2 = 1 in S,.. ~ 2~eT~'
in eqn (5) for the cases ofO0 < m < M and they can 0,m XS..

1_. .I ,

, Mt

-Sm

R LEA- LIGHT EMITTING ARRAY FOR

INPUTTING BIPOLAR MULTIVALUED
(O'T II, POSITIVE LEO."NECATIVE LED).

FL 1. L2 • AI AMORPHIC IMAGING SYSTEM

BSC • BEAM SPLITTER CUBE
wj M1. U 2 .MIRRORS
(m) TMis TM2- TILTED MIRRORS

POAp. POA2- PHOTO-DETECTOR ARRAYS

FIGURE 5. Optical shufle scheme for generating S.o.
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The mapping equation in conventional neural nets nonlinear mapping of the form tanh(-qST), where
is, and "9 are constant parameters. A preliminary im-

V, = g(u) (8) age obtained with this nonlinear adaptive threshold
is given in Figure 6(b) which reveals features of the

and g(u.,) is a sigmoidal function. For the problem original object that were not discernible in the pre-
of image reconstruction. multivalued neural states v,, ceding images. For example. the double barreled na-
have to be used to represent the bipolar object func- ture of the engines is now more clearly delineated.
tion. In an attempt to make the neural net processor
more neuromorphic. modification must be made to
the conventional neural mapping equation expressed VI. DISCUSSION
in eqn (8) to preserve the multivalued neural re- The neural net processor can also be used for object
sponses. Heuristically therefore the nonlinear map- reconstructions when the relationship between the
ping will be confined only to the adaptive threshold measurement data and the object function is not nec-
80, such that 0,, = g(Sr) with Sr being a linear corn- essarilv Fourier transform: in this case. there is no
bination (window) of the neural state vector T of the fast and robust algorithm found so far for reconstruc-
net. The term 1,,. which represents the known in- tions. But the neural net processor concept presented
formation, will not go through the nonlinear mapping here can be easily applied just by modifying the op-
in order to preserve the original available informa- tical mask representing the underlying transform to
tion. Accordingly. the neural state mapping equation achieve fast and robust reconstructions. The term I,,
will be of the following form. = 2Re [V2= F,(i)K ,,] is actually the real part of the

U,= " W,',,,, - g(S-.) - xI (9) complex range-profile computed from measured fre-
quency response data by FFT and it can be viewed
as the partial input "seed" or "key" to the neural

As mentioned earlier, the adaptive threshold net as the initial estimate of the real range profile of
represents the regularization factor in the original the object function to be reconstructed. The neural
energy function. The introduction of nonlinear adap- net processor concept described can be applied to a
tive threshold g(S-) will extend the set of the regu- wide range of practical problems simply by inputing
larization functions applicable. The adaptive the corresponding partial "key" as I,, to the neural
threshold S,, in eqn (5) can be viewed as a linear net. Nonlinear regularization functions can be intro-
convolution (or a kind of linear mapping) f * T of duced in the neural net processor as described and
the neural states f with a filter Y consisting of three many nonlinear or linear regularization functions
discrete points having values with high degree of smoothness that is difficult to

1 - ,4. realize rapidly by digital computation can be easily
xr¢- 1) = -A, Ar. x(J) = Ar Ar realized optically. The regularization parameter o.

n 1) -A. _%r which controls the fitness and smoothness of the re-
constructions in our research of microwave image

respectively. as shown in Figure 6(a) when A, = reconstructions. can also be adaptively changed de-
.A. = 1. This linear mapping can be replaced with a pendent on the fitness of the reconstruction with the

Ar 4-±

z-l ) (1 )
-- - - -0)A -I -r

- I Imr - I/-A. r

(a) (b)

FIGURE 6. (a) Linear mapping function: (b) image reconstructed by nonlinear mapping.
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measurement data during the iterative process of the Usually, F(p) is measured at equally spaced dicrete frequency

neural network. Doing imaging adaptively, and in- points in 1p,, p:, that is.

corporating attractive information processing fea- ,= p + (i - 1)P- 2

tures of neurons, could make processors of the kind N - I

described here unique and powerful to outperform where [p,. pA corresponds to the frequency band fw,, oj] used in

many existing processors. the measurement.
Replace eqn (A.3) with a linear algebraic equation for com-

putation purposes,
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APPENDIX: 7 ERIVATION OF THE
ITERATIVE EQUATION - X [F,(i)I2 - F,(i)F*(t) - F,:(i)F(i) + F(i)F*(i)]

This appendix derives the iterative equation for the neural net 121

processor. The energy function for the neural net processor is 4~ f(nt - A~m - 1) 2
given in eqn (1) and is rewritten here. I f2(m) + I Ar. (A.8)

• -0 Ar

H(J) = IIF, - F11' + aR(7). (A.1) Using eqn (A.5), we will have,

As mentioned in the text, f denotes the object function to be N r 14

reconstructed and F is the Fourier tansform of f, F, is the fre- F(i)F'(i) K-F(m) K.~
quency response from measurement; R(,) is a regularization op- ,. ,- ,...

erator on f and a a regularization parameter. In the derivation
here, we will use the following form as the norm in the frequency = M , r [
domain,- [ K Kjfmfm)

IF, - FI1: I F,(i) - F(i)1' (A.2) = -

-- >jT...f (m)f mW). (A 9)

where N is the number of samples in the frequency space and also
the number of frequency measurement samples. F,(t) and F(i) Here, the notation

are the frequency response samples at the ith frequency point. N

For a spatially limited functton f(r) and its Fourier transform T.=-X K K.
F(p). there exists the following relationship.

F(p) f f(r)e '-'dr (A.3) ha. been used and f*(m') f(m'). that is. f(m') is real, has been
J. a 'umed.

Treating the other term accordingly, we will get.
%%here the spatiallN limited function f(r) is assumed as.

f(r) 0 if r C [a. b] I [F(i)F:() + F(i)F() = V l1f(m) (A. 10)
( = 0 otherv.ie ,.o
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with the notation, T'herefore. wc t~ie,

1. K_ [,.F, (i) + K _*F, (1) 2 2Re F, i) K,*.j ,f(m) -l f m (n (A 17)

From eqn (A.5), it is seen that the direct Fourier inversion of the IHerc. the constant X is chosen in such a wayi as to ensure dcent
measured frequency response Fdi) would y ield an estimate of the of the energy of the net to a minimum of I11(f) and this will be
object function given by (with a scale constant), discussed later in this appendix.

From eqns (A. 13) and (A. 14) and using the proper values for
1()~ F,(i)K_ (A.ll) the constants A, and A.. we will have,

and 1,. would just be the real part of this Fourier estimate. P1( -f ( N

Using eqns (A.9) and (A.l1). the energy function H(7) can Z 2ReJT....Jf"'(m') + I. - S. (A. 18)
be rewritten as, LI- I

H(f) =- T....fm~fm') with the term S. being,

N N S= 2a l'"(m .r + 1 + A
- .f(m) + J F,(i) 1 Ar

- - Af"'(m - 1) + AJ"'(m + 0]I} (A. 19)
+i F [(m) (A r + rII)

L) Ir t is seen that eqn (A. 18) is the iterative equation for the processor
-2 P-fMa 1), + f 2(m- (A. 12) given in eqn (4) in the text and when 0 < m < M, eqn (A. 19) is

Ar J eqo (5) in the text.
Now let us determine the conditions that A must satisfy inNote that f(m) =0 for m <_0 or m > M has been assumed. order to find the minimum of H(f). When the value of the kth

The first derivative of H(1) with respect to f(m) is found as. neuron is changed from f'1(k) to f'(k) + Af(k), the energy

dif(f) M function change can be written as.
E__ I T-.. + T. fxm) -4-df(m) .,-0 H(f) + AH~(f) =H1(f + 6k,f(m)). (A. 20)

+ 2. {f(m) (Ar + ± 2  Referring to eqn (A. 12), it is found,

- [ AJf(m - 1) + AJ(m + 1)]} (A. 13) A H,'k(f) = J 2ReIT..Jf(m') + 1. - S,] Af(k)

where, the constants A, and A., are given as. - TO - . (Ar + I +rA2)] [Af(k)V-. (.1
fI if0 <m M M

A 10 if M = 0 Using eqns (A. 17) and (A. 18) to express Af(k), we will obtain,

. 0 ifM = M. AH.J)= - + T,, -ca ( Ar + Ar

From T... -,.K..K_... it is seen that T,.,-_ . x (A. 22)
K_. K: (T-.. o, Since [Af(k)]f is nonnegative, if A satisfies,

T _~. + T ., = MR4T .. (A .N1) / A)+If the higher order derivatives are ignored, the change AH of the + [T. - a A + Ar >o (A. 23)
energy function H(J) due to the change of the mth neuron's A I
output f(m) can be written as, then. AH,(J) !:- 0, that is. H(J) will decrease and find its minima

- - dH(f) as f(m) changes.
AH = H11"1(f) - HOI(f) - AfPm) From etqn (A.7) and the notation T.. KK*,w

df(m) can find.
=dH(f) [ "- "Ml A 5
df(-) T... K, -' K,', - K, - NV (A.24)

We wan t to find t he m ini ma of Hj) so we want It (f) to decrease
as f(m) changes, that is, which is a known constant for the given sample interval Ar in the

dli(f) object domain and the total number of samples N in the frequency
AH = dm)[f,'"(in) - f"(m)] < o. (A. 16) domain. Therefore, A can be determined from the known quan-

df~m)tities according to eqn (A.23).
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ABSTRACT: The problem of extrapolation for near-perfect reconstruction and target

identification from partial frequency response data by neural networks is discussed. Because

of ill-posedness, the problem has traditionally been treated with regularization methods.

The relationship between regularization and the role of hidden neurons in layered neural

networks is examined, and a layered nonlinear adaptive neural network for performing

extrapolations and reconstrut-tions with excellent robustness is set up. The results are then

extended to neuromorphic target identification from a single --look- (single broad-band

radar echo). A novel approach for achieving 100% correct identification in a learning net

with excellent robustness employing realistic experimental data is al-o given. The findings

reported could potentially obviate the need to form radar images in order to identify targets

and could furnish a viable and economical means for identifying non-cooperative targets.

1 Introduction

For an object function o( r) of finite spatial extent, the corresponding frequency response

F(p) extends over the entire frequency domain -x <p< +X. Because of practical con-

straints, the frequency response F(p) can only be measured over a finite frequency window

P, < p< P2 to give the measured frequency response Fm(p). The traditional and widely

used approach of Fourier inversion, by means of a discrete Fourier transform ( DFT). as an

algorithm for retrieving o(r) from Fm(p) violates a priorz knowledge of the object function



and yields an estimate of o(r) with limited resolution, which may not satisfy the resolution

requirements in demanding applications.

More sophisticated methods for retrieving a better estimate of o(r) from F,(p) exist.

The retrieval of o(r) from the partial information F,(p) in the presence of noise is, however.

known to be an ill-posed problem [1],[2J. Studies have been carried out for retrieving o(r)

by incorporating a priori knowledge and minimizing a certain -cost function" related to

F,(p) subject to a given criterion [3]. Mathematically, the function to be minimized can

be put into the following general form:

H(o) = IlFm - F112 + aR(o) (1)

where F, is the measured frequency response: F is the Fourier transform of the estimate

function o(r); R(o), called the regularization function, is to ensure that the reconstructed

o(r) has certain smoothness properties; and a. called regularization parameter, adjusts the

degree of fitness expressed in the first term on the right hand side of (1) relative to the

degree of regularization or smoothness expressed in the second term. For example. the

function R(o) in Tikhonov's regularization method [1] is taken to be a sum of the squared

derivatives of o(r),

RT(o) = L[olk)(r)] 2  (2)
k

to ensure that o(r) has the required degree of smoothness. Here o(k ) represents the kth

derivative of the function or).

There are limitations, however, to all existing reconstruction algorithms: either an al-

gorithm works well only for a certain class of object functions or the a priori knowledge

requirement is too stringent to be satisfied. The maximum entropy algorithm (4]. which

works well for point-like object functions, can be placed into the former class, while the

Papoulis-Gerchberg's algorithm [5].[61, which requires knowledge of the exact extent of ob-

jects, can be placed into the latter class. By inspecting equation (1), one appreciates that

reconstructions will be dependent upon the regularization function R(o) chosen and that a

given R(o) will only ensure certain regularization (or smoothing) properties for the object

function o(r). This is the reason why different algorithms with different R(o) work well only

for a certain set of object functions. For example. the maximum entropy algorithm works

well for point-like object functions and Tikhonov's regularization is good for continuous

object functions. This represents one difficulty in choosing the regularization function R(o)

"2



in setting up the cost function H(o) in (1). Another difficulty is in choosing the regular-

ization parameter a for a given reconstruction problem. For practical reconstructions from

noise contaminated data, the parameter a can be chosen mathematically depending on the

signal-to-noise ratio in the data. This in turn introduces the added problem of having to

estimate the signal-to-noise ratio, which in practice is difficult to do.

Neural net models offer a new dynamic approach to collective nonlinear signal process-

ing that is robust and fault-tolerant and can be extremely fast when parallel processing

techniques are utilized [3],[7]. Neural net models provide a new way of looking at signal

processing problems and can offer novel solutions. A neural net processor for solving image

reconstruction problems through the minimization of an energy function of the type given

in (1) has been studied earlier [3]. Here, a neural net approach to the problem involving

self-organization and learning is investigated. By making use of the neural paradigm albeit

in a highly simplified and loose sense, our nets allow for complex neurons and complex

interconnection weights. in addition to the more biologically plausible real neurons and real

interconnects. An adaptive three-layer neural net will be used to solve image reconstruction

problems. Learning is carried out in the net to change the interconnections between neurons

in different layers by using the error back-propagation algorithm [8]-[11].

The analogy and relationship between the role played by hidden neurons and that played

by regularization functions in neuromorphic solutions of the image reconstruction problem in

( 1) will be discussed. It will be shown that hidden neurons play a certain regularization role.

and that regularization functions in neuromorphic processors can be realized with hidden

neurons. In the approach presented, learning enables the neural net to form automatically

the regularization function R(o) and the regularization parameter a, and to carry out near-

perfect reconstructions adaptively and with excellent robustness.

The near-perfect reconstruction results motivate further study of object recognitions

with label representations. A three-layer nonlinear net will be discussed for practical radar

target identification. A novel approach to achieve perfect (1007 correct) identification of

three test targets utilizing realistic data collected in an anechoic chamber using scale models

of actual targets will also be presented. The findings support and demonstrate the viability

of the neuromorphic automated target identification first proposed by Farhat et al.161 as a

replacement to the t rafitional. but considerably less economical, approach of radar imaeing.



2 Problem Formulation

For a spatially limited object function o(r) and its Fourier transform F(p), there exist the

following well-known relationships:

F(p) = fo (r)e-P'dr (3)

(r) = + F(p)eJ P dp (4)

where the spatially limited o(r) satisfies.

or $0 if rE [rI,r 2]

=) 0 otherwise

The spatial frequency variable p has the dimension of inverse length [m-1 ]. The spatial

frequency band corresponding to the frequency band [w1,w2] used for measurement will

be denoted as [p,p2]. When the frequency response F(p) is measured at equally spaced

discrete frequency points over the measurement band [pl,p2], that is, at the frequency

points,

Pk = p, + (k - 1)Ap k = 1.2,..-,N (6)

where N is the total number of measurements taken and Ap = (p2 - pl)/(N - 1), the

estimate of the object function by the discrete Fourier transform (DFT) algorithm (the

discrete form of (4)) can be expressed as.
1^ P 1Fk )eJp,

o(i) = o(r,) 2r Z--ePkF
k

E F(k)eJLD'+ (k - I) Ap][r, + (t- 1) A

2r k

i= 1,2 ..-... \ 1(7)

where .1r = (r 2 - r )/( - 1) is the object function sampling interval and Al the total

number of samples in the object domain. The resolution of the DFT estimation is known to

be proportional to 2 , /(p2 - p, ) and is insufficient for discerning object detail with spacing

finer than 2-r/(p2 - PI ). Several method, fn, ,cerding this ri-, ,,tion 1" and achicving

super-resolution have been studied in the past 14)-[6], but these methods suffer from certain

limitations, as noted in the introduction. Reconstructing microwave radar images from data

processed by minimizing an energy function of the form given in (1) through neuromorphic



processing has previously been considered [3]. Results of our continuing work on the re-

lationship between the role of hidden neurons and regularization functions discussed in [3]

are presented in the next two sections.

3 Neuromorphic Image Reconstruction

In this section we present a brief review of radar image reconstruction by neuromorphic

processing [3] in order to lay the foundation for our subsequent discussion of the relation

between the role of hidden neurons in layered nets and regularization functions. The func-

tion to be minimized in microwave radar imaging by neural net processing [3] has the same

form as that in (1),

H(o) = IIFm - F1l2 + aR(o) (8)

All quantities in (8) are the same as defined earlier. The norm defined in the complex space

C is of the following form:
N

HE, - El = j IF,,(i) - F(i)12  (9)
s=l

When the Fourier transform F is expressed in terms of the object function o(r), the energy

function H(o) in (8) will only be a function of the variable o(r), since F, is the known

measured frequency response. After some manipulations and by assuming that the object

function to be reconstructed in microwave radar imaging is real (see [31), the foowing state

update equation for the neuromorphic processor can be obtained:

o(-+)(k) = o(')(k) + Ao(k) + Alk 0 < k < I (10)

Ao(k) = A 2 -[Tk,]o()(i) - Sk (11)

where o(J)(k) represents the state of the kth neuron at the j'h iteration; A is defined as the

gain of the kth neuron: and Tk, is a quantity which bears information about the transfor-

mation (here the Fourier transform) from the space 0o to the space Q3F. The term Ik

represents the available information Fm, given by,

Ik = 2 R F, (i) A'k (12)

where K,k = c e& ' *k is the Fourier kernel and c is a constant. Equation (12) is identified as

the real part of the complex object function generated by Fourier inversion of the measured



frequency response Fm. The term Sk in (11) is viewed as a regularization-related adaptive

threshold, given by the following expression:

Sk = 2a[Akiko()(k) + .4Ak(k-1)oo)(k - 1) + Ak(k+1)o') (k)] (13)

where Akk, Ak(k-1), and Ak(k+l) are constants [3], for a stabilizing (regularizing) function

of the following form in Tikhonov's regularization method:"I [" ( o , 0 ) , t 2,]R(o) = o2(i) + Ar (14)

t=1 A

or in its equivalent continuous form:

R(o) = J {o + [o'(r)]2} dr (15)

The neural net update transformation as expressed in (10) is carried out iteratively until

the global minimum of the energy function of (8) is reached.

Microwave radar images reconstructed using the neural net processor described in (10)

showed improvement over images reconstructed by DFT algorithm, when Tikhonov's stabi-

lizing function (14) or an adaptive threshold linearly related to the neural states as expressed

in (13) was used [3]. In conventional neural nets, binary neurons and nonlinear mapping

of neural states are used [7]; this is largely responsible for the robust and fault tolerant

collective signal processing properties of neural nets. The neural state update equation in

(10) is a linear iterative equation when the threshold of linear mapping of neural states

given in (13) is used: in this case, the advantage exploited in a neural net using (10) to solve

the problem in (8) is only the parallel processing capability of the neural net. No use is

made of nonlinear mapping. For the problem of image reconstruction in (8), multi-valued

(analog) neural states have to be used to represent the bipolar object function. Therefore,

in order to make the neural net processor in (10) more neuromorphic. nonlinear mapping

can be introduced only via the adaptive threshold Sk. A nonlinear function of the form,

g(So) = tanh(So) (16)

similar to the sigmoidal function widely used in conventional neural nets [71, [8] was in-

troduced heuristically and employed for the adaptive threshold, with S, being a linear

combination of the neural states [3]. The adaptive threshold Sk in (13) is a linear combina-

tion of the three nearest states only and S, in (16) denotes a linear combination of possibly
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many states in general. The neural state update equation in (10) can then be rewritten as,

0(+1)(k) = o(l)(k) + Ao(k) + AIk 0 < k < M (17)

Ao(k) = A 2ZR[Tk1]o(J)(i)- 9 (So) (18)

The neural net processor in (17) v as used to reconstruct one-dimensional functions

(range-profiles) from measured frequency response data F, for a sufficiently wide range

of aspect aragles of a scaled model of an aerospace test object. A two-dimensional object

function representing a projection image of the test object was formed by coherently sum-

ming the back-projections of the one-dimensional range-profiles based on the projection-slice

theorem [31, [121.

The scale model used in this study is that of a B-52 airplane. Realistic frequency response

data F, for the object were gathered for a range of aspect angles in an anechoic chamber

microwave scatter measurement facility for two different frequency bands: one extending

from 6 GHz to 17 GHz :nd the other from 2 GHz to 26.5 GHz. Images reconstructed

from the two frequency bands by DFT inversion and back-projection are shown in Figs.

l(a) and (b), respectively. The image in Fig. 1(b) from the wider frequency band of 2

GHz to 26.5 GHz has a higher resolution than the image in Fig. l(b) from the narrow

frequency band of 6 GHz to 17 GHz, as would theoretically be expected. It clearly shows

the double-barreled nature of the engines, a detail which is not clearly delineated in the

image in Fig. 1(a). The image reconstructed from frequency response data acquired over

the narrower band (6 GHz to 17 GHz) using the neural net processor expressed in (17) with

the nonlinear threshold mapping function given in (16) is shown in Fig. 1(c); this image

has nearly the same resolution as the image reconstructed over the band from 2 GHz to

26.5 GlIz and the double-barreled nature of engine is once again clearly delineated. The

image quality obtained using the neural net processor expressed in (10) with the linear

threshold mapping function is inferior to that in Fig. 1(c), indicating the importance of

incorporating nonlinearity [3]. These results demonstrate the high resolution capability of

nonlinear neural nets in image reconstructions.



4 Relationship Between the Role of Hidden Neurons and

Regularization Functions

The neural net processor expressed in (17) is basically of the Hopfield variety [7]. It works

iteratively until a stable state of the net is reached to give a solution for the image recon-

struction problem of (8). The iterative process can be implemented by a parallel feedback

loop [3] in which the net's new state is obtailied by the feedback of the state change Ao(k)

computed from the neural state for the preceding iteration (see schematic Fig. 2(a)). The

computation of Ao(k) can be implemented by a subnet with one hidden layer of neurons as

shown in Fig. 2(b). By comparing (17) with Fig. 2(b) it can be noted that the hidden layer

neurons implement the nonlinear adaptive threshold related to the regularization function.

Thus, the weights (or synaptic connections) used for the adaptive threshold can be com-

bined with other weights that directly connect the input layer with the output layer, if the

adaptive threshold is a linear mapping of neural states like that shown in (13). In this case.

the neural net update equation (10) can be rewritten as:

-+)(k) = o(J)(k)+Ao(k)+AIk O< k < M (19)
M

Ao(k) = 2A [3?[Tk, - abkkAki - 0 6 (k-.)jAki - a(k+)jAk] o()(i) (20)

where 6, is the Dirac delta function. On the other hand, the total connections imple-

mented from the input layer through the hidden layer to the output layer in Fig. 2(b)

can not be combined with other direct connection weights from the input to the output

layers. This demonstrates the necessity of implementing an adaptive threshold representing

a regularization function in nonlinear neural nets with a hidden neural layer.

The relationship between the role of hidden neurons and regularization functions can

also be appreciated by examining the regularization role played by hidden neurons. Hidden

neurons are used to generate internal representations in neural networks and to extend the

computational (or mapping) power of simple two-layer associative networks [8]. In simple

two-layer associative networks, input patterns at the input layer are directly transformed

(or mapped), through the synaptic connections between neurons, into output patterns at

the output layer. No internal representations by hidden neurons are involved in such a

network. Because of this direct mapping property, simple networks will transform i, put

patterns of similar structure into output patterns of similar structure: consequently, such

network will not be able to yield mapping outputs that are quite different when the itputs



input pattern output pattern

00 0

01 1

10 1

11 0

Table 1: XOR Mapping

are quite similar (or vice versa). A classic example of this situation, that has been discussed

by other researchers [8], is the exclusive-or (XOR) problem illustrated in Table 1.

In this example, the inputs (for example, 00 and 11), which are quite different, are to

be mapped into the same output (for example. 0). If two neurons in the input layer are

used to represent the two input bits and one neuron in the output layer is used to represent

one output bit in a simple two-layer network, it is impossible to find a set of weights and

thresholds for all the neurons that would perform the desired mapping [13]. Complications

in applying a simple two-layer net without hidden neurons to the XOR mapping problem

arise in mapping quite different patterns (11 and 00) to identical output (0), as well as

in mapping quite similar patterns (01 and 10) into identical output (1). Such pair of

mappings arc quite contradictory and. by definition, are ill-posed. (For example, in inverse

scattering, the mapping finverse) is known to be ill-posed if the solution of the mapping or

reconstruction does not exist or is sensitive to noise in the input data.) In the XOR problem

in a two-layer neural net, a network to perform the mapping cannot be found: thus it is an

iL-posed problem since no solution for the problem exists.

On the other hand, a layer of hidden neurons inserted between the input and output

layers of a simple two-layer network will enable the network to perform arbitrary mapping

from input to output via the hidden neurons, if an adequate number of hidden neurons are

utilized [], [13]. It can easily be verified that the network with a single hidden neuron shown

in Fig. 3 can perform the XOR mapping mentioned above. This network overcomes the

difficulty encounted in a 2-layer net by using a hidden neuron to change the quite differenl

input patterns into patterns with sufficicnt simih:rity as seen by the output-layer neuron:

it accomplishes the task by using one hidden neuron for a two-bits to one-bit mapping.

The required weights of synaptic connections among the neurons, indicated in Fig. 3 by



the number on the arrows, are ultimately determined through learning (see, for example,

[8]-[11]). The numbers in the circles represent the required thresholds of the neurons, which

are assumed here to be fixed. All the neurons in the net are assumed to have only two states:

on (1) or off (0). The hidden neuron has output 1 (on) only when both input neurons have

states 1; otherwise it has output 0 (off). The output neuron will be turned on when it

has a net positive input greater than 0.5; the output neuron will be turned off (net input

smaller than 0.5) by the hidden neuron output through the synaptic connection weight of

-3.0 when both input neurons are on. From the point of view of the output neuron, the

inputs to it are quite similar when the input neurons are on (11) or off (00). Thus, the role

of the regularization or constraint function played by the hidden neuron is to change the

degree of similarity among the input patterns corresponding to the same output pattern.

This role can be considered to be the same as that of regularization functions for ill-posed

problems.

The regularization role played by hidden neurons can als , be appreciated from the

error back-propagation (EBP) algorithm, in which hidden neurons are used [81-[11]. The

EBP algorithm for a general problem is also formulated so as to minimize the error energy

function,

E = IIO - 011' (21)

where 0 is the specified or the desired output and 0 is the output of the network for a

given input. For the given input and the specified output. the error signal given by E is

fed-back (or back-propagated) into the network to adjust the interaction weights (weights of

synaptic connections) among all neurons, including hidden neurons. This learning procedure

is iterated until a set of weights is arrived at for which the specified output. or equivalently,

the specified minimum of the energy function, is reached. Comparison of the energy function

in (8) with that in (21) shows there is no regularization operation involved in (21). It is well

known that inversions by minimizing the error energy function of the form shown in (21) in

the presence of noise are ill-posed and that the outputs are usually not stable with respect

to the inputs. From our simulation results obtained by networks with hidden neurons, it

is found that the performance of the networks is quite robust with respect to inputs. This

demonstrates further that the role played by the regularization operator in (8) to constrain

the output in ill-posed mapping problems is achieved using the hidden neurons in neural

networks. Impossible mappinas in a neural network can be made possible by increasing

10



the number of hidden neurons; this can be explained by the fact that regularization is

introduced or further enforced by the increase in number of hidden neurons.

5 Reconstruction by Neural Nets Through Learning

The iterative neural net equation (10) can be cast in a closed form of a non-iterative equation

and implemented with a non-iterative processor when an adaptive threshold (13) that is a

linear function of neural states is used. On the other hand, when an adaptive threshold (16)

that is a non-linear function of neural states is used, the iterative neural net equation (17)

can not be written in the closed form of a non-iterative equation. There is no known method

to directly implement the iterative equation with a non-iterative processor; this results from

the difficulty of choosing a different regularization R(o) and a different parameter a in (8)

for a different reconstruction problem, since the first term on the right hand side of (8)

can be computed with a non-iterative DFT processor. This difficulty can be overcome by a

neural net through learning that enables formation of R(o) and a automatically, depending

on the image to be reconstructed.

Hidden neurons have been shown to have a regularization effect in last section. Hence

a hidden neural layer will be used here for the purpose of regularization, overcoming the

ill-posedness of image reconstruction from partial frequency response. A three-layer neural

net with feedforward connections for image reconstruction is schematically shown in Fig.

4. The input laver takes the frequency responses from measurements, and complex neurons

(i.e., their states are complex and equal to the real and imaginary values of the measured

complex frequency response) in the input layer are connected to neurons in both the output

layer and the hidden layer. The synaptic connection of neurons in the input layer to

neurons in either the output layer or the hidden layer are complex and will be fixed and

taken as the Fourier weights for the image reconstruction problems in situations in which

the measurement data and the iniage to be reconstructed have a Fourier transform relation.

The number of neurons in all three layers are assumed to be the same, for the moment, and

to equal the number of frequency points at which the response is measured. Images to be

reconstructed are assumed to be normalized to unity and the output from neurons in the

hidden layer will take a rnonlinear function of the form tanh(.j. Mathematically. the final

11



output neural state representing the image to be reconstructed is,

o(i) = z(i) + tanh [ z i)] (22)

where rij is real-valued synaptic link between the ith neuron in the output layer and the

jth neuron in the middle (hidden) layer and,N
z(l) = R [ IVIkF,(k) 1 = ij (23)

where R[.] represents the real part of the bracketed quantity and IVk are the Fourier weights.

Once more, a real object function o(i) is assumed for microwave radar imaging [3]; and z(l)

is recognized as the real part of the Fourier inversion of the measured frequency data F,.

Learning in the neural net involves determining the synaptic weights ril by an error

back-propagation algorithm [S]-[11]. With an error back-propagation algorithm, the neural

network can be made to learn, under supervision, to perform extrapolations and recon-

structions as follows: for a given desired or ideal object function D, when the measured

frequency response Fm(p) is fed into the network in Fig. 4 and the output from the network

denoted as o, an error function,
12

E=ID - ol2 = I E ID(i) - o(i) 2  (24)

can be defined. Since knowledge of the desired object function D at the output of the net is

required ( D is also the ideal desired image at the output), the learning is supervised. Using

the chain differentiation rule. the change of the error function with respect to the change

of weight r,, can be written as.

&E OE Oo(i)
Oo(i) (25)

From equation (24).

- -[D(i) - o(i)] =- (26)

and from equation (22).

N(, K=:J2

- (])/ cosh2  Zr,, z Wj (27)
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Combining now (25), (26) and (27), the following equation is obtained,

- b -6,z(j)/cosh2  rijz(]) (28)

To reduce the error signal in (24), the weight rij can be changed through gradient descent

by an amount,

A.- rij =- ql --( - E)i

= i77,z(j)/cosh 2 [ irzU)1 (29)

with 77 being a constant controlling the learning rate.

The above procedure is for one given object (or pattern) function D. When there are M

ideal images of interest, the procedure is carried out Al times, once for each image. For each

image the error signal is checked and if a specified error criterion (to be specified below)

is not satisfied, the procedure is repeated again for every pattern; this is done repeatedly

until the error signal criterion is satisfied for each image.

6 Simulation Results and Robustness Tests

Simulations were carried out to verify the learning concept presented above. Several ideal

object functions of spatial extent within [0.4] cm are used. The number of neurons for

the input, middle, and output layers are assumed to be equal to 21 for each layer. The

small number of neurons used and the small extent ([0,4] cm) of the function occupied

are all chosen for the purpose of containing the computations involved, but they can be

increased or altered at will to any desired value. The frequency response of the object

function chosen is synthesized (computed digitally) in the 6-17 GHz range and subjected

in simulation to the action of the network in Fig. 4. The network can determine a set of

r,, links for a given set of functions to produce correct patterns within the specified error

criterion ma-xJD(i) - o(i) < 0.097.

For one of our simulations, done for a set of two object functions, the first object function

is,

{ 1.0 r E [0.2. 1.2](cm)
0 r C [0,0.2)(cm) or r E (1.2.4.0](cm)
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The second is,{ 1.0 r E [2.2,3.2](cm)

0 r E [0,2.2)(cm) or r E (3.2,4.0](cm)

These two functions, shown in Figs. 5(a) and (b), respectively, have spatial extents within

0-4 cm. The frequency responses of the two object functions synthesized over the frequency

window 6-17 GHz are shown in Figs. 6(a) and (b), respectively. If the DFT inversion

method is applied to the frequency data in Fig. 6, a low resolution image with most of

its intensity concentrated around the sharp edge of the object functions will be obtained

because of the relatively high frequency window. Fig. 7 shows the reconstruction of the first

object function from the partial frequency domain data in Fig. 6(a) by the DFT method.

This reconstruction shows that there is a relatively broad positive pulse at the position of

the rising edge of the original object function and a broad negative pulse at the position of

the failing edge of the original object function; the two pulses are of different amplitude even

though the given object function has the same rising and falling edges. When the two object

functions are alternately presented to the network in Fig. 4 and the synaptic connections

are changed according to (29), the learning process gradually converges and a set of synaptic

connections is learned by the network, enabling it to provide near-perfect reconstructions

of the object functions within the specified error criterion when the frequency response of

either object function is presented to the network. The network accomplishes the learning

in just five learning cycles, defined as the process of presenting the two patterns to the

network once and modifying the weights following each pattern presentation.

Figure 8 shows the outputs of the network for several typical learning cycles and demon-

strates w the network gradually learns the two patterns by adjusting its connection

weights. Shown in Fig. 8(a) are the outputs of the network for the first pattern (left

side) and for the second pattern (right side) after the network has been trained with the

first pattern only during the first learning cycle. It is seen from Fig. 8(a) that the output

from the network for the first pattern as input is near-perfect and the output for the second

pattern as input resembles more the first pattern rather than the second; this is under-

standable, since the network has as vet learned only the first pattern. Completing the first

learning cycle by training the net next with the second pattern. we find the network is able

to give a near-perfect reconstruction of the second pattern as input (right side, Fig. 8(b)).

When the first pattern is presented, the output is altered, becoming more like a superposi-

tion of the first pattern and the second pattern. This occurs because, during the learning
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of the second pattern, the network loses some of its previous internal representation of the

first pattern. The internal representation of the first pattern is restored, however, in the

second learning cycle following the presentation of the first pattern again to the net. The

output (left side, Fig. 8(c)) from the network for the first pattern as input again approaches

a near-perfect reconstruction and the output (right side, Fig. 8(c)) for the second pattern

as input is much better than that obtained during the first learning cycle (right side, Fig.

8(a)). This result is also understandable since, so far, the network has been trained with the

first pattern twice (during the first and second learning cycles) and with the second pattern

once only (during the first learning cycle). The output for the second pat.tern (right side,

Fig. 8(d)) is improved during the second learning cycle after presenting the second pattern

to the network for learning; once again, this degrades the performance of the network in

recognizing the first pattern (left side, Fig. 8(d)). By repeatedly and alternately presenting

the two patterns to the network for learning, the network gradually adjusts its intercon-

nection weights to improve the reconstructions for both patterns. Shown in Figs. 8(e) and

(f) are the outputs of the network during the third learning cycle after the first and second

patterns have been presented to the network, respectively: the performance of the network

is seen to have improved in comparison with the corresponding cases in the second learning

cycle. After the first pattern has been presented to the network for learning during the

fourth learning cycle, the outputs for both patterns are much better (Fig. 8(g)), except for

the presence of some side lobes for the second pattern as input (right side, Fig. 8(g)). The

side lobe level is reduced to the specified tolerable error range of ma.xID(i) - o(i)I < 0.097

during the fifth learning cycle. Fig. 8(h) shows the outputs of the network for both patterns

after the network has been presented with the first pattern for learning during the fifth or

the final learning cycle.

How to choose the learning rate 77 is critical to the speed of the learning process. The

range of suitable learning rates can be analytically determined for learning algorithms in-

volving a linear function of neural states [14]. For the learning algorithm involving a non-

linear function of neural states given in (29), it is, however, hard to analytically determine

the range of the learning rate. By inspecting (29), it is seen that the learning rate 77 repre-

sents the proportion by which the synaptic weight changes in accordance with the output

error induced by the current synaptic weights themselves. In our preceding simulations, the

learning rate chosen is usually q = 0.99. As indicated elsewhere, it would not make sense to

have the learning rate 77 greater than 1, since this could "overcorrect" output error [14] - a
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phenomenon that has been observed in our simulations. By "overcorrection", we mean that

the output error (energy) being minimized exhibits oscillations and sometimes is increased.

Overcorrection usually results in a longer convergence time. On the other hand, making

the learning rate too small could also slow down the learning process. Another cautionary

remark in carrying out the learning process is that the initial synaptic weights should not

be equal; otherwise, the network would obtain identical weights for all synaptic connections

[8]. The initial synaptic weights in our study were chosen randomly.

More complex-shaped object functions were also used to test the learning and recon-

struction capability of the neural net in Fig. 4. A set of two object functi.ons is shown in

Fig. 9. The first function has a spatial extent of 0.2-0.8 cm (Fig. 9(a)) similar to that

shown in Fig. 5(a). The second function is of a more complicated shape. The first part

of this function is a pulse of 0.8 cm in width and the second part is of a triangular shape.

After a set of synaptic weights is learned by the network by presenting the two patterns

to the net five times, the network is able to give a near-perfect reconstruction when the

frequency response of either function is presented to it. The reconstructions of the two

object functions by the network are shown in Fig. 10. Comparing Fig. 10(b) and Fig.

9(b) shows that the reconstruction of the triangular portion of the second object function

is perfect; since the triangular part of the second function resembles more the undulations

of a continuous function, its perfect reconstruction implies the network performs better for

continuous functions.

Generalizations and Robustness: The two simulations presented above have shown

good results when the network is used for reconstructions of object functions that it has

been presented with during the learning process. Generalization, which deals with the per-

formance of a network when inputs are similar to, but not specifically among, the training

sets the net has been presented with during the learning process, is an issue of practical

importance (14]. Generalization for extrapolations and reconstructions from partial fre-

quency information is studied here from the po,,t of view of the network's performance

with noise-contaminated frequency response input data.

Based on the discussion in Section 4. it can be appreciated that hidden neurons play

a certain regularization role, and that such regularization makes the solution stable for

problems of extraplations and reconstructions from partial frequency information. Nu-

merical simulations were conducted to verify that the network with hidden neurons in Fig.

4 provides sufficient regularization and is capable of giving stable and robust reconstruc-
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tions even in the presence of noise. One of these simulations was done with the test object

functions shown in Fig. 5. The frequency responses of the two object functions in Fig. 5

were contaminated with Gaussian noise with the following distribution function.

G(N)- Ie /(2 2  (32)

where N represents the noise amplitude, and a2 is the variance of Gaussian noise. Defining

the signal-to-noise ratio (SNR) as,

SNR -average sianal energy in the given frequency band

noise variance
p2 P,, IF(p)12dp/o2  

(33)

we find that when SNR=5, the noise-contaminated frequency responses for the two ob-

ject functions are as shown in Fig. 11 for the frequency band 6-17 GHz corresponding to

p E [2.5.7.1(cm-1). The difference before and after noise contamination can be seen bv

comparing Fig. 6 and Fig. 11. Even though the frequency responses in Fig. 11 after noise

contamination differ appreciably from the noise-free frequency responses in Fig. 6, the net-

work, which learned a set of synaptic connections using the noise-free frequency information.

is still able to yield reconstructions of high quality, as shown in Fig. 12. The reconstruc-

tions in Fig. 12 from the noise-contaminated frequency information show a weak side-lobe

structure compared with the reconstructions in Fig. 8(h), where noise-free frequency in-

formation is used as input. When the SNR is further decreased, the side lobe structure

in the reconstructions from noise-contaminated frequency information will increase. The

reconstruction from noisy frequency response data can be improved by training the network

with noise-free, as well as some noise-contaminated frequency data. For studies with the

two test patterns considered here, the network was trained with the noise-free frequency

data shown in Fig. 6. and also with the noisy frequency responses (SNR=I) shown in Fig.

13. The ideal patterns neeied in the supervised learning process for the noise-free and noisy

data were specified to be the same as those shown in Fig 5. The noise-free data and the

noisy data were presented alternately to the net to adjust the connection weights until the

specified error criterion maxJD(z) - o(i) < 0.097 for every pattern was reached. When the

resulting network is tested using noisy frequency response data (SNR=5) as input after the

stated training, the outputs from the network are as shown in Fig. 14. Comparing Fig.

14 with Fig. 12 shows a clear improvement of the side-lobe structure, the result of mixing

instances of noisy and noise-free data sets in training the network. In practice. a network.
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being trained with examples of data from its environment, is expected to encounter differing

levels of SNR. The findings above suggest that this could be beneficial for enhancing the

performance of the net.

7 Radar Target Identification by Layered Networks

The preceding discussion shows that robust extrapolation and near-perfect reconstruction

can be achieved with layered nonlinear networks. An interesting issue is whether there

always exists a network that can do extrapolations and reconstructions for a given finite

number of functions or patterns of interest. A theorem concerning multi-layer neural net-

works, which simply states that a multi-layer network with sufficient number of hidden

neurons is able to perform any kind of mapping from input to output [8],[151, makes it

possible for the network shown in Fig. 4 to perform extrapolations and reconstructions of

any finite number of functions of interest, if enough hidden neurons are used in the network.

For a finite number of aerospace targets, a two-dimensional object function describing the

geometrical shape of each target can be formed from the one-dimensional functions recon-

structed by a learning net, as described in the last section, through extrapolation of partial

frequency response data acquired for fixed aspects of the targets over a sufficiently wide

range of aspect angles [3]. The two-dimensional image obtained in this fashion can provide

sufficiently high resolution through data acquisitions over a wide range of aspect angles

and extrapolations of the measured frequency response data for every aspect. Such high

resolution images, like those shown in Fig. 1, would enable a human observer to recognize

and identify the target. Another more attractive and less involved concept in target iden-

tification does not involve forming an image. It provides for target identification from an

identifying label of the target generated by a neural net automatically from input informa-

tion (i.e., frequency response data) belonging to that target [16]. This approach is necessary

in situations where aspect information (frequency response echos for various aspects) of the

target can not be obtained over a sufficiently wide range of aspect angles because of prac-

tical limitations and a high-resolution image of the target consequently can not be f)rmed

[16). The issue then is that of radar target identification from a single frequency response

echo for any practical aspect of the target, or a few such echos, using a layered nonlinear

network through self-organization and learning.

The traditional approach in nonimaging radar target recognition has been to extract



from suitably formed radar echos characteristic features or signatures of the targets and

to compare these with a library of such signatures [17]. This kind of approach is basically

a parametric estimation method and makes certain assumptions about the form of the

return signals or echos as expressed by several parameters. The extraction of the assumed

parameters used in the approach is usually sensitive to noise [18] and there is no adaptation

involved.

The network used for target recognition in our work is shown in Fig. 15. This network

is a variation of the network used in Fig. 4 for extrapolations and reconstructions. In

the network in Fig. 4, which was shown to be robust in extrapolations and reconstruc-

tions from partial information, the number of output neurons was equal to the number of

samples representing the function to be reconstructed. In the network shown in Fig. 15,

intended to perform robust target recognition from partial information, the number of out-

put neurons is chosen to allow forming enough distinguishable labels to represent all targets

of interest. Using labels instead of object functions makes learning easier, since the ideal

object functions that are needed to accomplish learning for extrapolations and near-perfect

reconstructions, and that are not easy to obtain for aerospace targets in general, are now

not required. Since label representations rather than object functions of targets are to be

used for identification in this case, no direct connections between output neurons and input

neurons in Fig. 15 are used, this simplifying the structure of the network. As before, the

connections from input neurons to hidden neurons accomplish Fourier mapping, i.e.,

NZ(i) = RE1"k ()](34)
k=1

where 14,k represents the Fourier weight for inverting the known (measured) partial fre-

quency domain information Fm(k). For target recognition from other than frequency do-

main information, the weights IV, are set up in accordance with the applicable transform,

or else they are determined through training. The input to an output neuron in Fig. 15 is

given by.

u,= Z r,(j) (35)

where r,, again represents the weight from neuron j in the hidden layer to neuron i in the

output layer to be determined by learning. The output neuron state is now given by the
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expression,

o(i) = U[tanh(ui)] for U, > 0 1 = ,2,..-,M (36)
1 0 for ui < 0

where U[.] is the unit step function. The form U[tanh(ui)] is used in (36) to show more

clearly the nonlinear summation input to the output layer, as well as the evolution of the

circuit in Fig. 15 from that of Fig. 4. Different targets are represented by different output

states.

Two groups of test targets were used in our study: the first group contains a 100 : 1

scale model of a B-52 aircraft and a 150 : 1 scale model of a Boeing 747 airplane; the second

group contains a 75 : 1 scale model of a space shuttle in addition to the two scale models in

the first group. Sketches of all three scale models with their actual dimensions are shown

in Fig. 16. It can be noted that the shapes of the Boeing 747 and the space shuttle are

relatively less complex than that of the B-52 airplane. Two output neurons are used to

provide label representations for the three aerospace target models; two output neurons

can usually provide labels for 22 (= 4) distinct patterns. The state (0,0) of the output

neurons in the network shown in Fig. 15 is left idle to indicate the case in which there is

no information input to the network.

For practical applications of radar target identification, it would be necessary to examine

the performance of the network for all possible aspects of the target that could be encoun-

tered by the observer (the radar system), a process that entails massive data collection and

storage. Because of the limitations of our experimental facility, frequency response data for

the targets are collected for only a limited range of aspect angles extending over a range of

200 in azimuth from a head-on (00) view of the targets to 200 towards the broad-side view of

the targets. The elevation angle of the target was fixed at 150 relative to the horizontal. The

results obtained with this limited data set are, however, quite telling and representative of

what can be expected with larger libraries of frequency responses covering all target aspects

of interest. Frequency domain data are collected for 100 aspect views equally spaced over

the 200 range for each target, representing a separation of 0.20 between adjacent views.

'he network in Fig. 15, designed for target identification, was first presented with

frequency response data from a certain percentage of the 100 aspect views of the targets

to allow learning to take plac,'. Each target is assigned a label: (0,1) for the B-52: (1,0)

for the Boeing 747; and (1,1) for the space shuttle. A total of 101 frequency points were

collected over tho band 65-17.5 GlIz for each aspect view; the number of neurons chosen
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in the input and hidden layers was also 101. Learning is carried out via the error back-

propagation algorithm described in Section 5. which enabled adjusting the connection

weight ri between the output neuron and the hidden neuron. When the frequency response

of a target for a specific aspect angle is presented to the network, the network iteratively

adjusts the weight rij by error back-propagation until the desired label for the target is

produced by the network. The training data (frequency response for different aspects or

,views) are presented in turn to the network for each target; all targets of interest are learned

by the network iz turn. The process of presenting all the training data for all targets once

constitutes one learning cycle. The maximum number of iterations required for the network

to learn specific targets of the types used in our study was 7 at the start of the learning

process , but this number decreased as learning progressed or as the number of learning

cycles increased. Once the network has assimilated and learned the correct representations

for all targets, the learning process is terminated. The maximum number of learning cycles

observed for the network to learn all targets was 8.

Fig. 17 shows the performance of the network for the first group of targets, the B-

52 and the Boeing 747 scale models. The curves in Fig. 17 indicate the probability of

correct recognition by the network of the two targets with respect to the percentage of

the total 100 aspect views collected that were used for training. The training set can be

selected deterministically, i.e., in a given order, or randomly from the set of 100 aspect views

characterizing each target. The criterion for choosing the training set is to make sure that

information about the target is evenly represented. For example, the deterministic selection

case of 50 percent of the available aspect views as the training set can be formed by selecting

every other aspect view, i.e., all the even- (or odd-) numbered views out of the total 100

available aspect views. For the random selection case, the training set can be formed by

selecting aspect views out of the total angular window of 200 with even probability. Our

study shows that the performance of the network is virtually unaffected by the method of

selection for the training set and at most a 1% discrepancy in results for the two methods

of selection is observed. In order to test the performance of the network after it has been

trained, all 100 aspect views are used. While a certain percentage of the test set would have

been used in training the network, the remainder of the test set would not have been seen

by the network before. When 107 of the total available views, or equivalently, when views

with roughly 20 angular separation are used for training, the network achieves only 547,

correct recognition for the B-52 and 72% for the Boeing 747, even though the incremental
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spacing between viewing angle for t*,e given set of data is small (0.20). The performance of

the network improves nonlinearly as the percentage of views used for training is increased.

Because the shape of the Boeing 747 is less complex than that of the B-52, the network is

able to capture its underlying structure in its internal representation ( the rij weights) much

faster, allowing for better recognition. The network reaches 90% correct recognition, when

the percentage of views used for training increases to 40% for the B-52 and 20% for the

Boeing 747, or when the minimum angular spacing between adjacent views in the training

set is approximately 0.5' for the B-52 and 10 for the Boeing 747. When the percentage of

views used for training for both targets increases to 60%, the network can recognize more

than 98% of the testing aspect views presented to it correctly.

For the network shown in Fig. 15, with the connection weights from the input layer

neurons to the hidden layer neurons fixed as Fourier weights, the input to the hidden layer

can be interpreted as the real part of the Fourier inverse of the measured frequency response

data F, for one aspect view. This input (range-profile) to the hidden layer bears information

such as the rough extent, shape, fine structure, etc., of the target as seen from that aspect

angle [3]. During training, the network extracts common features or certain correlations

from the training data to form a representation for the target by adjusting its weight rij.

When the network is tested with test views, the portion of the test views which have

not been presented to the network during training can be considered as noisy versions or

"correlates" of the training set. This ability of the net to generalize, i.e., to recognize noisy or

correlated data, is an attractive feature of neuromorphic signal processing. The range-profile

data in various aspect views of a complex aerospace target can differ noticeably from one

aspect angle to another. In fact, since the data in various aspect views for complex shaped

aerospace targets change markedly from one aspect angle to another, the resemblance or

correlation of adjacent views for some aspect angles are so weak, even for the angular spacing

of 0.2' used in our data acquisition, that the network fails to recognize the targets perfectly

(with a 100% score) even when almost all the views are used for training; this is evident

in Fig. 17 by the fact that correct recognition for both targets did not reach 100% until

1007 of the available aspect view data were used for training. The results plotted in Fig.

17 show that the average probability of misrecognition from a single-aspect view when 607

or more views have been used for training is 1%.

Perfect Recognitions: The probability of misrecognition can be made negligible and

even reduced to zero in two ways. One way which we describe here is to use more than
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one aspect view for a given target in interrogating the network, with the outcome decided

by a majority-decision rule. The multi-aspect views for recognizing aerospace targets in a

practical target identification system could be readily collected and presented to the network

as targets fly by the system. The training procedure for recognition from multi-aspect views

remains the same as that used for recognition from a single-aspect view.

Fig. 18 shows the performance of the same network of Fig. 15 in recognizing the

first group of targets from three, rather than one, aspect views after the network has been

trained with the available training set of aspect views. The three aspect views are randomly

selected from the test set (100 views) and are sequentially fed into the network; the outputs

from the network provide the three labels from which a majority vote on the recognition

outcome can be determined. There were 33 groups of three aspect views randomly formed

from the total 100 aspect views thus ensuring that almost every aspect view is included

in the test. Fig. 18, which displays the correct recognition percentages with respect to

these 33 groups, shows that the overall performance of the network improves by a factcr

of about 10% when using three views rather than a single view for interrogation. The

correct recognition performance increases much faster as the percentage of the views used

for training increases. The network now reaches 100% correct recognitions when 25% of

the views for the Boeing 747 and 35% of the views for the B-52 are used for training. The

network was also tes-ed with the second group of targets which was formed, as mentioned

earlier, by adding a space shuttle scale model to the first group of targets. The network

was trained similarly using a certain percentage of the total available aspect views from

all three targets. Fig. 19 shows tbat correct recognition performance of the netwo-k for

the space shuttle is similar to that for the Boeing 747. From a practical standpoint, it

makes more sense to evaluate the performance of the net by using multiple aspect views

as test signals combined with a majority vote when the three aspect views are successive

or adjacent to each other rather than being distributed over a wide range of aspect angles.

This is representative of situations where the nct is probed with three successive frequency

responses collected from a target as the target changes its aspect relative to the measurement

system because of relLti,'e motion. In our study, the performance of the network, when the

three aspect views are successive or adjacent to each other, was found to be similar to the

rases shown in Fig. 19.r. which the three aspect views are randomly selected. lecognition

using multi-aspect views may be supported by biological vision systems in which multiple

perreption fields are formed 19.
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The second approach for reducing the misrecognition probability, which we only mention

here, is to use inultisensory information for both training and interrogation. Polarization.

sensitive sensors can, for example, be used to measure the frequency response of the target

for orthogonal polarization. Data generated in this fashion can be used for both training

and interrogating the network to enhance the probability of correct classification.

Dynamic Range and Noise Considerations: One issue that should be mentioned

with respect to neural networks concerns the dynamic range of input signals to the network.

In applying neural networks to practical problems, it is usual to use binary digital inputs

[7] or normalized inputs [21]. The range of inputs to the network shown in Fig. 15 is not

constrained (i.e., it is neither binarized ncr normalized); it is the raw frequency response of

the target measured for a given aspect corrected for range-phase and measurement system

response [3]. The network can be trained and tested with signals of arbitrary amplitude.

No normalization is needed for preprocessing. For example, this network, which was trained

with a set of aspect views with a maximum amplitude of 0.5 (arbitrary units) for the B-

52 airplane, would yield the same result when interrogated with test sets of aspect views

of maximum amplitudes of either 1 or 106 (arbitrary units). This practically significant

behavior, which we attribute to the highly nonlinear nature of tb network (see equations

(3.5) and (36)), indicates that there is little constraint on the dynamic range of the test

signals applied to the trained net.

A second issue concerns the network's performance with noisy data. Data in our study,

which were collected in an experimental imaging facility, had a SNR of about 15-20 dB.

The network was also tested with signals having a smaller SNR by adding to the test

data artificial Gaussian noise in accordance with the distribution shown in (32). This

situation was taken to be a crude representation of cases where the test data are collected

under non-ideal situations, such as when vibrations and wind buffeting against an aircraft

produce noisy frequency response rneasurementF. The training data used were still the

original frequency response data collected in our anechoic chamber measurement facility

with no additional noise added. Fig. 19 shows that tt.e network is able to perform 100'7

correct recognition of the three test targets when ihe network was trained with 40S7 of the

available aspect views and tested with the test set of experimental uata without additional

noise added. During the train*,Tg process. the output was mapn ,d from the input as shown

in (36). When noise was added to the test set to test the .etwork trained with 40X of the

aspect views of experimental data. the performance of the network was as given in Table
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SNR 1 2 3 4 5 6 7 8 9 10

0 = 0 74 78 85 88 91 93 95 97 100 100

0=0.1 94 100 100 100 109 100 i0o 1100, 100 100

Table 2: Percent correct recognition of Boeing 747 for two different .'mlues of the threshold

0.

2 by the row beginning with 0 = 0 for the Boeing 747 plane. The performance of the

network for the other two target models was found to be generally similar and is therefore

not shown. It is seen from Table 2 that the performance of the network deteriorates as SNR

decreases, but the network is still able to furnish 74% correct recognition even with SNR=1

(i.e. SNR=0 dB). The performance of the network in the presence of this severe noise case

can be improved by changing the zero threshold in (36) to a finite threshold during the

training process, and by maintaining the zero threshold during the test or interrogation

stage. In this case, the output neuron state in (36) during the training process was replaced

by,

1 for tanh(ui) > 0
o(i) = (37)

10 for tanh(ui) < -0

where 0 represents the threshold. The output neuron state during the test process is still

given by (36) or by 6 = 0 in (37). The performance of the network in recognizing the

Boeing 747 scale model for 6 = 0.1 in (37) is shown in the last row in Table 2; the network

was trained with 40% of the available aspect views with no additional noise added. The

improvement in performance resulting from the finite threshold can be readily noted: in

the low SNR range an improvement of roughly 20 percentage points is achieved. As the

threshold 6 increases, the performance of the network with respect to noisy data improves.

But in situations where the noise is severe, such as SNR=I, it is hard to achieve perfect

recognitions, since thresholding becomes less effective.

Effect of Spectral Windows: All results presented above are for frequency response

data collected over 6.5-17.5 GHz band for 101 points. A question of practical importance

is whether fewer data points or a narrower spectral window can be used to facilitate the

data acquisition process without sacrificing target identification ability by the trained net.

We used several approaches to assess the effects of spectral bandwidth and the number of
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data points over the band on the performance of the network in identifying the given target

models. One way was to keep the spectral band fixed at 6.5-17.5 GHz and decrease the

number of data points over the band; this is equivalent to changing the sampling interval of

the frequency response data. In so doing, the number of neurons in the input layer, which

represents the number of data points in each measured frequency response, is decreased

along with the number of hidden neurons which is equal to the number of neurons in the

input layer. Another approach was to keep the sampling interval unchanged and to choose

a portion of the 6.5-17.5 GHz band as the new spectral band, which again decreases the

number of neurons in input layer. In this case, the location of the selected spectral band was

found to have little effect on the performance of the network. In all of the above cases, the

following behaviors were observed: (a) When the number of data points and the number of

neurons in the input layer representing the input data points to the net is decreased, either

by changing the sampling interval or by choosing a smaller spectral band, the number of

learning cycles required by the net increases; this may be explained by the fact that for

every target, the amount of information in the data sets presented to the net during training

is reduced as the number of input data points is decreased; thus, it takes relatively longer

for the net to learn the underlying structure in the data presented to it and to form internal

representations of the targets. (b) When the number of input data points to the net is

too small, the net cannot learn or form the internal represe; -tions. The learning process

does not converge. The minimum number of data points for which the learning process

diverges is 17. the integer closest to 101/6 and the factor by which the sampling interval

of the frequency data over the band 6.5-17.5 Gllz was increased. (c) When the number of

input data points to the net is decreased, the performance of the net generally deteriorates:

the average percentage of deterioration is 5%, with no clear pattern of deterioration. For

example. when the frequency band was reduced to 10.5-15.9 GHz, over which there were

50 data points, and 40% of the available 100 aspect views (frequency responses) over this

band were used for training the net, the net's performance in recognizing Boeing 747 is

94%. This can be compared with the results shown in Fig. 19 in which the net was able

to achieve 100% correct identification of the Boeing 747 when it was trained with 407 of

the available views of 101 data points over the 6.5-17.5 Gllz band and tested with aspect

views over this frequency band. The performance of the net with narrow spectral band data

can be improved by increasing the percentage of available aspect views used for training.

Wh n the input frequency data to the first layer of the net consisted of 50 points over the
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10.5-15.9 GHz band, and the percentage of the available aspect views used for training the

net was increased to 50%, the performance of the net in identifying the Boeing 747 model

was found to improve to 99%.

The divergence mentioned in the preceding observation (b) occurs when the number

of input data points to the net, and hence the number of input layer neurons (and thus

the number of hidden neurons, which equals the number of neurons in the input layer), is

too small. Theoretical considerations of the mapping power of multi-layer networks [8],[15]

suggest that any mapping can be accomplished through a network of the type shown in Fig.

15 provided that an adequate number of hidden neurons is used (see cautionary arguments

noted in epilogue, [13]). We therefore tested whether the network can converge and learn to

form internal representations of the targets when the number of input data points was small

by increasing the number of hidden neurons in the net. As mentioned earlier, when the

number of input (frequency response data) points over the 6.5-17.5 GHz band to the net is

reduced to 17, the learning process by the net could not converge; in this case, the number

of the hidden neurons was also 17. However, by increasing the number of hidden neurons to

21, the net is able to converge and learn the internal representations for the given aerospace

target models. It should be pointed out that, since the Fourier transform mapping between

the hidden and input layers in the net of Fig. 15 is carried out according to the discrete

summation given in (34), the number of hidden neurons does not have to be equal to the

number of input layer neurons (see also equation (7)), this result supports the theory in

[8],[151. By increasing the number of hidden neurons further, the number of learning cycles

required by the net to converge during the training process is reduced. Once there are

enough hidden neurons and the net is able to converge to learn the internal representations

for the given aerospace target models, no clear improvement in performance is found, in

terms of correctly identifying the given target models when the number of hidden neurons

is increased further [21].

8 Classification, Identification and Cognition

The terms "target identification" and "target recognition" are frequently used interchange-

ably in the literature, and we have done the same here. Actually there is an important

difference between the two terms. The network we have described in the preceding section

is not cognitive. Once it has learned a set of targets, it can correctly identify which out of
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the set is responsible for the sensory signal (e.g., the complex frequency response) presented

at its input by producing a correct identification label at its output. The net is robust, in

that noisy versions of its training set data are also correctly classified by triggering the

correct identification label. This robustness also provides for a generalization capability, in

that the network is able to classify correctly a data set belonging to the learned object that

was not specifically among the training set. This capability to generalize means that the net

does not have to be trained on all data sets needed to represent the object as dictated by

angular sampling considerations (e.g., the scattering pattern of a target of extent L must be

sampled approximately every A/L [radians] when A is the mean wavelength.of observation).

Without proper precautions, these robustness and generalization features also mean that

every input presented to the network will produce a response by triggering a label, even

when the input belongs to a novel object, i.e., one that was not learned by the network.

The network is therefore not cognitive in that it has no mechanism for determining whether

a presented signal belongs to a familiar (previously learned) object or to a novel object.

Cognitive capability is essential for proper interpretation and use of a classifier network's

response, as well as for possible triggering of other useful mechanisms like learning a novel

input and adding it to the repertoire of the net.

There are several ways to impart cognition to a classification network. One is to train

the network on every object it could possibly encounter in its environment in the course of

normal operation. This approach may not, however, be practical, as it could require a major

increase in the size of the network. especially when the number of possible targets is very

large. A second way to impart cognition is to add at the system sensory level detectors that

analyze the received signals to see whether they belong to the class of targets of interest.

Usually, inference rules and decision trees are needed to make such distinctions, and more

than one sensing modality is often indicated (e.g., measurement of altitude, speed, bearing,

size (radar cross section), polarization, etc.). A third way for making a network cognitive

is to incorporate cognitive capabilities in designing the net from the outset [22].

9 Discussion

Extrapolation and reconstruction by neural networks through learning were discussed in

the first part of this paper. This approach provides a novel way for near-perfect extrapo-

lation and reconstruction from partial frequency response information. The approach leads
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by logical extension to the problem of target identification using label representations at

the output layer in place of the exact object functions reconstructed in the extrapolation

problem. The focus in using neural networks for extrapolation and recognition is on the

structure of networks and on the learning that takes place in them, and not on any partic-

ular computation carried out by a particular neuron. The number of neurons in the hidden

layer of such networks need not be equal to that in the input layer, as in most of the nets

presented here, and can be increased at will. The synaptic connections from the input layer

to both the hidden and the output layers need not be fixed, as was the case in this study, but

can learn to handle any reconstruction problem in which the available datiL and the object

functions do not necessarily have a Fourier transform relation or when the relation is not

certain or known. In our work, the measured frequency response data and the object func-

tion (the real part of the Fourier inverse of the frequency response, i.e., the real part of the

complex range profile of the target) form a Fourier transform pair. For practical application

of the target identification concept presented in this paper, one envisions that a library of

frequency responses of scale models of targets of interest can be generated by measurements

under controlled conditions in an anechoic chamber radar scattering measurement facility

for all target aspects relevant to practical encounter scenarios between a radar system and

the target. Data generated in this fashion would be "taught" to a layered net by training

as we have described. To use such "trained nets" to identify actual radar targets (that cor-

respond to the scale models used) from data generated by broad-band radar systems in the

field, attention to scaling issues would be given by invoking the principle of electromagnetic

similitude [20]. In this fashion, one hopes to avoid the tedious and costly task of forming

libraries in the field using actual radar systems and cooperative target 'Tly-bys".

The number of neurons in the input layer of our learning networks is determined by

the number of available frequency samples. The relation between the number of functions

that can be learned by the network an(' the number of neurons in the hdden layer is still

an open question; however, the theoretically established claim for the mapping power of

multi-layer ncuron networks [8], [15] taken together with the findings of this work, provide

strong evidence in support of the use of layered networks for target recognition. Nonlinear

mappings in layered networks enable the formation of the desired reconstruction mapping

region [15] to give robust reconstructions from partial and noisy frequency information. The

application of these concepts to the problem of noncooperative radar target identification

provides convincing evidence of the capability of neuromorphic processing in providing
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results not attainable by traditional signal processing techniques.
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(a) (b)

(c)

Figure 1: Microwave images reconstructed by DFT (a) for spectral bandwidth 6-17 Gffz

and (b) for spectral bandwidth 2-26.5 GHz; (c) image reconstructed by nonlinear neural

net for the 6-17 G(Hz spectral bandwidth data.
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Figure 2: (a) Realization of the neural net processor; (b) realization of nonlinear regular-

ization in the nIPural net proce~ssor.

3-4



output
05 neuron

hidden
neuron

0 0
input neurons

Figure 3: Network for XOR mapping.

35



00i)

0 0... 0 .9
r k j

(a)

()

Z(j)



LC)

E

0.0 1.0 2.6 3.6 4.

range in centimeter

(a)

o

E

0

0.0 1.0 2.0 3.0 4.0
range in centimeter

(b)

Figure 5: Two test object patterns o(r) used in simulations: (a) first pattern; (b) second

pattern.
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Figure 6: Frequency responses for the first object (solid line) and the second object (dotted

lined): (a) real part: (b) imaginary part.
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Figure 7: Reconstruction of the first object pattern by DFT: (a) real part; (b) intensity.

39



ao w

at' at' a
('4 (4 a i' I
v)4) 4) C-, 4

E _8

L- 6. 03

4)C4) - C)

4) 44

*S 06 aCI uaO Wod 0

06_ C

wo St



0

0. o .6 2.6 3.0 4.6
range in centimeter

(a)

ao

0.0 1.0 2.0 3.0 4.0
range in centimeter

(b)

Figure 9: Object patterns with more comp!ex shapes used in simulation; (a) first pattern;

(b) second pattern.
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Figure 10: Reconst ruct ions of the conplex-shaped patterns of Fig. 9: (a) first pattern: (b)

second pattern.
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Figure 11: Noise-contaminated frequency responses (SNR=5) of the first pattern (solid line)

and the second pattern (dotted line) of Fig. 5: (a) real part; (b) imaginary part.
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Figure 12: Reconstructions from noise- contaminated frequency responses of Fig. 11: (a)

first pattern; (b) second pattern.
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Figure 13: Noise-contaminated frequency responses (SN R= 1) of the first pattern (solid line)

and the second patt,-rn (dotted line) of Fig. 5: (a) real part: (b) iniaginarv part.
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Figure 14: Reconstruction from the noisy data (SNR=5) of Fig. II after the network has

been trained with instances of the noisy data (SNR= 1) of Fig. 13 and the noise free data

of Fig. 6: (a) first pattern; (b) second pattern.
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Figure M6 Three aerospace targets used: (a) a B-52 airplane; (b) a Boeing 747 airplane:

(c) a space shuttle.
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Figure 17: Correct recognition from single echo or look" vs. size of training set for the

13-52 (solid line) dnd fir the Boeing 7-47 (dashed line).
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Figure 18: Correct recognitions vs. the size of training set when "a two o.t of three"

majority vote criterion is used for correct classification, for the B-52 (solid line) and for the

Boeing 747 (dashed line).
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Figure 19: Correct recognitions vs. the size of training set when "a two out of three"

majority vote criterion is used for correct classification for the B-52 (solid line), Boeing -47

(dashed lin ), and Space shuttle (dotted line).
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Appendix VIII

Optoelectronic Neural Networks and
Learning Machines

Nabil H. Farhat

Foreword is distributed, nonlinear and iterative. Therefore they are
best described in terms of phase-space behavior where one

Circuits and Devices Magazine is featuring three sequen- can draw upon a rich background of theoretical results de-
tial articles on the current status of artificial neural network veloped in the field of nonlinear dynamical systems. The
implementation technol- ultimate purpose of biological neural nets (BNNs) is to sus-
ogy. The current otfering, tain and enhance survivability of the organism they reside
on optronic implementa- in, doing so in an imprecise and usually very complex en-
tion of artificial neural net- vironment where sensory impressions, are at best sketch\
works, is the second entry . and difficult to make sense of had they been treated and
in this trilogy. It is sand- analyzed by conventional means. Embedding artificial neural
wiched between the pre- nets (ANNs) in man-made systems endows them theretore
vious overview on analog " with enhanced survivability through fault-tolerance, ro-
implementation and the .____ bustness and speed. Furthermore, survivability implies

upcoming survey ot digital adaptability through ',elf-organization, knowledge acco-
artificial neural networks. ,.. mulation and learning. It also implies lethality.

Nabil H. Farhat, who "k All of these are concepts found at play in a wide range
penned this overview, is a of disciplines such as economics, social science, and even
co-author of the 1985 arti- military science which can perhaps explain the widespread
cle in Optics Letters and interest in neural nets exhibited today from both intellec-
follow-up paper in Applied Optics that broke ground for tual and technological viewpoints. It is widely believed that
modern optical implementation of artificial neural net- artificial neurocomputing and knowledge processing svs-
works. tems could eventually have significant impact on infor-

mation processing, pattern recognition, and control.
Robert I. Marks II However, to realize the potential advantages of neuro-

morphic processing, one must contend with the issue of
how to carry out collective neural computation algorithms

Abstract at speeds far beyond those possible with digital computing.
Obviously parallelism and concurrency are essential ingre-

Optics otters advantages u realiziitg the paralh'lis. massie intercoi- dients and one must contend with basic implementation
'rectivitv. and plasttetil req ired tii the desi%'j, aid copnstructio ot lar,'.- issues of how to achieve such massive connectivity and
scale optoelectropic (photonic) neiirocopiipiiters that sol e optimnization parallelism and how to achieve artificial plasticity, i.e.,
problems at potentalliy ,tle in"h speeds Ip learnipii to pcrtirin niappsgs
and associaltios. To elucidate these advana.ges, a riet ieural net prinier adaptive modification of the strength of interconnections

based op phase-s pace and energy landscape cop iiderattons is first pre- (synaptic weights) between neurons that is needed tor
sented. This provides the basis for subsequent discussion of optoelectronic memory and self-programming (self-organization and
architectures atid implementations ili selto.,anizatsoii and learimiil" ih'ilitI/ learning). The answers to these questions seem to be com-
that are conitt. red around an optical crossbar interconniect. Stochastic ing from two directions of research. One is connection ma-
learrint, in the context of a Bolt:iann imachipite i their descrled to illiis- chines in which a large number of digital central processing
trate the !lexihilits of optoclectropics in pertoritil tasks that mall I" units are interconnected to perform parallel computations
difficult for c'cctropllc, a/opic. Stochastic );itt 'ri 'tidit'll to .2(r'. iisi5'lt in VLSI hardware; the other is analog hardware where a
into the possible role ot noisc tit biolo ical niral nets. %'e close Nl'l Ide' large number of simple processing units (neurons) are con-
scribing two approaches to reahzins large-scale optclectronic iellroco,,t- nected through modifiable weights such that their phase-
puters. integrated optoclectropitc neuiiral chips w'ith iiterchiip optical
iiterconiects tit enables their cluster~i:., into large neural ictiorks, and space dynamic behavior ha- useful signal processing tunc-'ets e it tat-d eiiasonl rather tran oiudinelarge ai arra irerrerti of tions associated with it.

ncuropis andtour.diieinsiopial coniecttii'tt rmatricc tor tncrca ed packing Analog optoelectronic hardware implementation of neural
densitip, and compatmht uah tlo-dores mial data. IVe foresee 11,t,- nets (see Farhat et al. in list of further reading), since first
grated opto'lectron cs or phototiics platol . an rrircasiris role il tlt coil- introduced in 1985, has been the focus of attention for se\'-
striiction o* a nete cneration ot versatile pro.,raiimablc analo. conlqiters eral reasons. Primary among these is that the optoelectronic
that pertorin computations collectvehi, for use i neiroinorpiiic (l'rami- or photonic approach combines the best of two worlds: the
hike) processmipm and fast simulaion aid stidy of coniplex nonlmiear dy- massive interconnectivity and parallelism of optics and the
namical systems. flexibility, high gain, and decision making capability (non-

linearity) offered by electronics. Ultimately, it seems more
attractive to form analog neural hardware by completely

Introduction optical means where switching of signals from optical to
electronic camers and vice versa is avoided. However, in

Neural net models and their analogs offer a brain-like the absence of suitable fully optical decision making devices
approach to information processing and representation that (e.g., sensitive optical bistability devices), the capabilities
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of the optoelectronic approach remain quite attractive and and below. Thus the state of the i-th neuron in the net can
could in fact remain competitive with other approaches when be described mathematically by
one considers the flexibility of architectures possible with
it.' In this paper we concentrate therefore on the optoelec- s, = fu - 1, 2, 3 . .N '  (1)
tronic approach and give selected examples of possible ar-
chitectures, methodologies and capabilities aimed at where fi.) is a sigmoidal function and
providing an appreciation of its potential in building a new u, = W,,s, - 0, + 1, (2)
generation of programmable analog computers suitable for
the study of non-linear dynamical systems and the imple-
mentation of mappings, associative memory, learning, and is the activation potential of the i-th neuron, W,, is the
optimization functions at potentially very high speed. strength or weight ot the synaptic interconnection between

the j-th neuron and the i-th neuron, andW,,=O(i.e., neu-We begin with a brief neural net primer that emphasizes rons do not talk to themselves). 8, and 1, are, respectively,

phase-space description, then focus attention on the role the threshold level and external or control input to the i-th

of optoelectronics in achieving massive interconnectivity ne th res n te input to uo i-o
and plasticity. Architectures, methodologies, and suitableW,,S represents the input to neuron from
acnoplasit. rchirea s o moethooie ane l stsbse neuron 1 and the first term on the right side of (2) representstechnologies for realizing optoelectronic neural nets based the sum of all such inputs to the i-th neuron. For excitatory
on optical crossbar (matrix vector multiplier) configurations interconnections or synapses, W, is positive, and it is neg-
for associative memory function are then discussed. Next, aternhitoon .or a binars p te ne tt is,
partitioning an optoelectronic analog of a neural net into one in which the nurons are binary, i.e., s, ne,t, the smoothly

distinct layers with a prescribed interconnectivity pattern varin whicth on s re b r i., w he s"osth n

as a prerequisite for self-organization and learning is dis- g
cussed. Here the emphasis will be on stochastic learning step function. When W, is symmetric, i.e., W, = W,, one
by simulated annealing in a Boltzmann machine. Stochastic can define (see [. J. Hopftield's article in list of furthir read-

by~ng siuae annealinga in anr foutcmann mahie Stochastic
learning is of interest because of its relevance to the role of iog) a Hamiltonian or energy function E for the net by

noise in biological neural nets and because it provides an
example of a task that demonstrates the versatility of optics. E = , - u.s,
We close by describing several approaches to realizing the
large-scale networks that would be required in analog so- I Wss, (3)
lution of practical problems. - 2 ,

The energy is thus determined by the connectivity matrix

Neural Nets-A Brief Overview W,, the threshold level 0, and the external input I.. For
symmetric W, the net is stable; that is, for any threshold
level 8, and given "strobed" (momentarily applied) input

In this section, a brief qualitative description of neural I,, the energy of the net will be a decreasing function of the
net properties is given. The emphasis is on energy land- neurons state s, of the net or a constant. This means thatscape and phase-space representations and behavior. The the net always heads to a steady state of local or global

descriptive approach adopted is judged best as background energy minimum. The descent to an energy minimum takes
for appreciating the material in subsequent sections with- place by the iterative discrete dynamical process described
out having to get involved in elaborate mathematical ex- by Eqs. (1) and (2) regardless of whether the state update
position. ,id neurai net properties described here are well of the neurons is synchronous or asynchronous. The min-
known and can easily be found in the literature. The view- imum can be local or global, as the 1energy landscape" of
point of relating all neural net properties to energy land- a net (a visualization of E for every state s,) is not monotonic
scape and phase-space behavior is also important and useful but will possess many uneven hills and troughs and is
in their classification. therefore characterized by many local minima of various

A neural net of N neurons has (N'-N) interconnections depths and one global (deepest) minimum. The energy
or (N--N)/2 symmetric interconnections, assuming that a landscape can therefore be modified in accordance with Eq.
neuron does not communicate with itself. The state of a (3) by changing the interconnection weights W., and or the
neuron in the net, i.e., its firing rate, can be taken to be threshold levels 0, and/or the external input 1,. This ability
binary (0, 1) (on-off, firing or not firing) or smoothly vary- to "sculpt" the energy landscape of the net provides for
tog according to a nonlinear continuous monotonic func- almost all the rich and fascinating behavior of neural nets
tion often taken as a sigmoidal function bounded from above and for the ongoing efforts of harnessing these properties

to perform sophisticated spatio-temporal mappings, com-
putations, and control functions. Recipes exist that show

i is worth mentioning here that recent results obtained in our how to compute the W, matrix to make the local energy
work show that networks of logistic neurons, whose response re- minima correspond to specific desired states of the net-
sembles that of the derivative of a sigmoidal function, exhibit rich work. As the energy minima are stable states, the net tends
and interesting dynamics, including spurious state-tree associative to settle in one of them, depenaing o,, the initializing state,
recall, and allow the use of unipolar synaptic weights. The net- when strobed by a given input. For example, a binary net
works can be realized in a large number of neurons when imple- we stron by ave input. or exae a hbinare

mened ithoptcaly adrsse rrlecior- tpeliqid rysal patal of N = 3 neurons will have a total of 2 ' = 8 states. These aremented with optically addressed reflection-type liquid crystal spatial litdnTae .hyrpestalpoibecmntos

light modulators. However, the flexibilitv of such an approach listed in Table 1. They represent all possible combinations
versus that of the photonic approach is vet to be determined. s,, s. and s, of the three neurons that describe the state

"'From here on at will be taken as understood that whenever the vector s = [s,,s.,s,] of the net. For a net of N neurons the
subscripts i or !) appear, they run from I up to N where N is the state vector is N-dimensional. For N = 3 the state vector can
number of neurons in the net. be represented as a point (tip of a position vector) in 3-D
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time when the net is iterated from an arbitrary initial staitc.

Wf- STAT " '3Such stable points are called "attractors" or 'lrmit point,

6% -PO S.ATI of the net, to borrow trom terms used in the description ,
nonlinear dvnamical svstems. Attractors in phase-pLIacca Xr'
characterized b% basins ot attraction ot given size and i'h- L

, . r ,Initializing the net from a state tallin,, within the ba,m ,
C attraction ot a given attractor and thus regarded a, an in-

.l" complete or noisy version ot the attractor, leads to a ira -

ector, that converges to that attractor. This is a many to,

a,4ARY NEURONS ',I I tb) MULTIVALUED NEURONS * (0.11 one mapping or an associative search operation that a.-

(NEURONS WrH SMOOTH to an associative memory attribute ot neural nets.
* ; ST"A'S Ly ON VII,ESI RESPONSE1 Local mmima in an energy landscape or attractors in rna,-

OF UNIT CUBE IN - NUMBER OF
NEURONSI LN STATES LYING WITHIN UNrT CUBE 'pace can be fixed by torming W in accordance %%vth thc

DISCRETE PHASE-SPACE LVEL - NUMR oF ESNOUSH Hebbian learning rule (see both Hebb and Hoptied w i-t
TRAJECTORIE NUMBER OF NEURONSi iq further reading, i.e., bv taking the sum or the outr

CONTINUOUS PHASE-SPACE products, o? the bipolar version,, ot the state vector v. e i'. vn
TRAJECTORY FALUNG ANYWHERE
INSIDE UNIT CUBE to store in the net

FiS. I Phae- iaee or statc space representition and traiectories 'or d
neltral net of N =3 neurons. ia) or biniarif tneieroni , (1') tor Uti ros Z4, wher
normalized smooth sigmoidai) respon.se.

space. The eight state vectors listed in Table I tall then on .. ,,.... ,
the vertices ot a unit cube as illustrated in Fig. Ica). As the - .
net changes its state, the tip of the state vector lumps from
vertex to vertex describing a discrete trajectory as depicted
by the broken trajectory starting from the tip ot the inal- LANDSCAPE
izing state vector s, and ending at the tip of the final state LOCAL
vector s,. For any' svmmetric connectivitv matrix assumed
for the three-neuron net example, each of the eight states MINIMA GM
in Table I yields a value ot the energy E. A listing of these ..
values for each state represents the energy landscape of the
net. Fig. 2 Conceptual representation of energy landscate.

For a nonbinary neural net whose neurons have nor-
malized sigmoidal response s,E[O,l s:ie., varies smoothly
between zero and one, the phase-space trajectorv is con-
tinuous and is always contained within the unit cube as Vi'.. = 2s:' - I i = 1,2 .. N m = 1,2. . AI
illustrated in Fig. ](b). The neural net is governed then by
a set of continuous differential equations rather than the are M bipolar binary N-vectors we wish to store in the net.
discrete update relations of Eqs. (1) and (2). Thus one can Provided that s,1"' are uncorrelated and
talk of nets with either discrete or continuous dynamics.
The above phase-space representation is extendable to a M : -

neural net of N neurons where one considers discrete tra- 4fnN
jectories between the vertices ot a unit hypercube in N- the M stored state s " will become attractors in phase-space
dimensional space or a smooth trajectorv confined within of the net or equivalently their associated energies will be
the unit hypercube for discrete and continuous neural nets, local minma i the energy landscape of the net as illus-
respectively. trated conceptually in Fig. 2. As M increases beyond the

The stable states of the net, described before as minima value given by (6), the memory is overloaded, spurious
of the energy landscape, correspond to points in the phase- local minima are created in addition to the desired ones
space towards which the state ot the net tends to evolve in and the probability of correct recall from partial or noisy

information deteriorates, compromising operation of the
Table I. Possible States of a Binaru e'eural Net of 3 N'eii- net as an associative memory (see R.J. McEliece et al. in

rons list of further reading).
The net can also be formed in such a way as to lead to a

s, s, s, hetero-associative storage and recall function by setting the

0 0 0 interconnection weights in accordance with
0 0 1 V.,= v:"'g .. (7)
0 1 0
1 0 0

0 0 1 where V'" and g"" are associated N-vectors. Networks o?1 0 this variety can be used as feedtorward networks only and

1 0 this precludes the rich dynamics encountered in feedback
1 1 1or recurrent networks from being observed. Nevertheless,

they are useful for simple mapping and representation.
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Energy landscape considerations are useful in devising
formulas for the storage of sequences of associations or a
cyclic sequence of associations as would be required for
conducting sequential or cy clic searches of memories.

Learning in biological neural nets is thought to occur by
,elf-organIzation where the synaptic weights are modified
clectrochemically as a result of environmental isensory and
other te.g., contextual)) inputs. All such learning requires w'Ut I W '
plasticity, the process of gradual synaptic modification. ,I n
Adaptive learning algorithms can be deterministic or sto- A
chastic supervised or unsupervised. An optoelC-Ctronic CA
Boltzmann machine) and it, learning pertorniance N ill bl

described in the section on large scale retwork, a, on - NOnSY -i
]ustration ot the unique capabilities of optoelectronic hard- THRESHM /I:/.N" INPUT
wa re.

Neural Nets Classification and Useful ......____

Functions

The energy function and energy landscape description
ot the behavior of neural networks presented in the pre-
ceding sections allows their classification into three groups. Fig. 3 Optoelectromc analog circuit of a iflWu intercorriected Picura2 ?W!
For one group the local minima in the energy landscape
are what countq in the network's operation. In the second
group the local minima are not utilized and only the global often occurs in combinatorial optimization problems ani n
minimum is meaningful. In the third group the operations the solution of inverse problems encountered, for e\anwlt .
involved do not require energy considerations. They are
merely used for mapping and reduction of dimensionalitv. The third group of neural nets is multilavered with lo-
The first group includes Hopfield-type nets for all types of

calized nonglobai connections similar to those in cellularassoative automata where each neuron communicates within its laerative, hetero-associative, sequential and cyclic data storage
and recall. This category also includes all self-organizing with a pattern of neurons in its neighborhood and with a
and learning networks regardless of whether the learning pattern of neurons in the next adjacent laver. Multilavered
in them is supervised, unsupervised, deterministic, or sto- nets with such localized connections can be used for map-
chastic as the ultimate result of the fact that learning, whether ping and feature extraction. Neural nets can also be cafe-
hard or soft, can be interpreted as shaping the energy land- gorized by whether they are single layered or multiayered,
scape of the net so as to "dig" in it valleys corresponding self-organizing or nonself-organizing, solely feedforward
to learned states of the network. All nets in this category or involve feedback, stochastic or deterministic. However,
are capable of generalization. An input that was not learned the most general categorization appears to be in terms of
specifically but is within a prescribed Hamming distance' the way the energy landscape is utilized. or in terms of the
to one of the entities learned would elicit, in the absence kind of attractors formed and utilized in its phase-space
of any contradictory information, an output that is close to (limit points, limit cycles, or chaotic").
the outputs evoked when the learned entity is applied to
the net. Because of the multilayered and partially intercon-
nected nature of self-organizing networks, one can define Implementations
input and output groups of neurons that can be of unequal
number (See section on large scale networks). This is in The e?-liest optoelectronic neurocomputer was of the full.
contrast to Hopfield-type nets which are fully intercon- interconnected variety where all neurons could talk to each
nected and therefore the number of input and output neu- other. It made use of incoherent light to avoid interference
rons is the same (the same neurons define the initial and effects and speckle noise and also relax the stringent align-
final states of the net). The ability to define input and cut- ment required in coherent light systems. An optical cross-
put groups of neurons in multilayered nets enables addi- bar interconnect (see Fig. 3) was employed to carry out the
tional capabilities that include learning, coding, mapping, vector matrix multiplication operation required in the sum-
and reduction of dimensionality. mation term in Eq. 2. (see Farhat et al. (1985) in list of

The second group of neural nets includes nets that per- further reading). In this arrangement the state vcctor of the
form calculations that require finding the global energy net is represented by the linear light emitting array (LEA)
minimum of the net. The need for this type of calculation or equivalently by a linear array of light modulating ele-

ments of a spatial light modulator (SLM), the connectivity
'The Hamming distance between two binary N-vectors is the matrix W, is implemented in a photographic transparency

number of elements in which they differ, mask (or a 2-D SLM when a modifiable connectivity mask
"A chaotic attractor is manifested by a phase-space trajectory is needed for adaptive learning), and the activation poten-

that is completely unpredictable and is highly sensitive to initial tial u, is measured with a photodiode array (PDA). Light
conditions. It could ultimately turn out to play a role in cognition, from the LEA is smeared vertically onto the W, mask with
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, .in list of further reading). Fig. 3 also shows a third LEA tor
i '  VI injection ot spatio-temporal nnise into the net as would be

required. tor example, in the implementation ot a noisy
D H threshold scheme for the Boltzmann learning machine to

LED. E ,2 ibe discussed later. The net of Fig. 3 behaved as an assoc.-
ARAY ative memory very much as expected and was round to

F ARRAYS exhibit correct recovery of three neurons stored from partial
intormation and showed robustness with element failure

WlI  (two ot its 32 neurons were accidentally disabled, 2 PDA
THREIOLD INTERCONNEC- elements broke, and no noticeable degradation in perform-
LED TIVITY MA SK ance was observed).

In the arrangement of Fig. 3, the neurons are tullv inter-
connected. To implement learning in a neural net, one needs

COMPUTER to impart structure to the net, i.e., be able to partition tihe'

CONTROU.R net into distinct input, output, and hidden groups or lavers
ot neurons with a prescribed pattern of communication or
Interconlections between them which is not possible In n

(f) tully interconnected or single layer network. A sJmp'le bt
effective way of partitioning a fully interconnected opto-
electronic net into several layers to torm a partially inter-
connected net is shown in Fig. 4(a). This is done simply bv
blocking certain portions of the W, matrix.

In the e\ample shown, the blocked submatrice, s.r t.'

prevent neurons from the input group V, and the output
group \ rnll talkinlz to each other directlv. They an do
so only ,.a the hidden or butler group ot neurons H. f or-

thermore, neurons within H can not talk to each other. Vlh
partition scheme enables arbitrary division or neurons amonc
lavers and can be rapidly set when a programmable non-
volatile SLM under computer control is used to implement
the connectivitv weights, Neurons in the input and output
groups are called visible neurons because the\ interlace
with the enironment.

The architecture of Fig. 4 can be used in supervised learn-
b ing where, beginning from an arbitrary W,, the net is pre-

sented with an input vector from the training set of vectors
Fi%. 4 Bonltznapin learning iachine. (a; optoeiect roiltc circuit hllagrarin it is required to learn through V, and its convergent output
of a net partitmoned Ito three lauers t/ blockuig segments ot tile itercon- state is observed on V. and compared with the desired
nectnti mn4,k. l') hardware mphie'entaiui O hwwon,, the State vector output (association) to produce an error signal which is
LED arrau at tihe tot, ri.ght, the MOSLM at the cotter flktrc(eti Iotss) used in turn according to a prescribed formula to update
aod an mte-,'irfd PDA (PDA al'utted to ail i:ra.e ,iteisitier tfibr output the weights matrix. This process of error-driven adaptive
winoldo for added aol mtile lower left. Tile uh,, rated circuit toard rack weights modification is repeated a sufficient number ot times
contains the MVSLA1 driver and comnputer ilk-rtace ad thi TV receivcr for each vector and all vectors of the training set until in-
I, th, background provdcs the "snow pattern" that is toira'dvlm through a puts evoke the correct desired output or association at the
slit onto tile Intensifier input window for optical inpection o! noise iII the
network. output. At that time the net can be declared as having

captured the underlying structure of the environment (the
vectors presented to it) by forming an internal represen-
tation of the rules governing the mappings of inputs into

the aid of an anamorphic lens system (cylindrical and the required output associations.
spherical lenses in tandem not shown in the figure for sim- Many error-driven learning algorithms have been pro-
plicity). Light passing through rows of W,, is focused onto posed and studied. The most widely used, the error back-
the PDA elements by another anamorphic lens system. To projection algorithm (see Werbos, Parker, and Rumelhart
realize bipolar transmission values in incoherent light, pos- et al. in list of further reading), is suited for use in feed
itive elements and negative elements of any row of W,, are forward multilayered nets that are void of feedback be-
assigned to two separate subrows of the mask and light tween the neurons. The architecture of Fig. 4(a) has been
passing through each subrow is focused onto adjacent pairs successfully employed in the initial demonstration of su-
of photosites of the PDA whose outputs are subtracted. in pervised stochastic learning by simulated annealing. Our
Fig. 3, both the neuron threshold H, and external input l, interest in stochastic learning stemmed from a desi. to
are injected optically with the aid of a pair of LEAs whose better understand the possible role of noise in BNNs and
light is focused on the PDA. Note that positive valued 1, is to find means for accelerating the simulated annealing
assumed here and therefore its LEA elements are shown process through the use of optics and optoelectronic hard-
positioned to focus onto positive photosites of the PDA ware. For any input-output association clamped on V, and
only. V, and beginning from an arbitrary W,, that could be ran-

This architecture was successfully employed in the first dom, the net is annealed through the hidden neurons by
implementation of a 32 neuron net (see Farhat et al. (1985) subjecting them to optically injected noise in the form ot a
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noise component added to the threshold values of the neu- vergent state vectors of the net, and computes and executes
rons as depicted by 6_ in Fig. 3. the weights modification. For reasons related to the ther-

The source of controlled noise used in this implementa- modvnamical and statistical mechanical interpretation of its
tion was realized by imaging a slice of the familiar "snow operation, the architecture in Fig. 4(a) is called a Boltzmann
pattern" displayed on an empty channel of a television learning machine. A pictorial view of an optoelectronic
receiver, whose brightness could be varied under computer (photonic) hardware implementation of a fully ope,."',"- !

control, onto the PD array of Fig. 4(a). This produces con- Boltzmann learning machine is shown in Fig. 4(b). This
trolled perturbation or shaking" of the energy landscape machine was built around a MOSLM as the adaptive weights
of the net which prevents its getting trapped into a state mask.
of local energy minimum during iteration and guarantees The interconnection matrix update during learning re-
its reaching and staying in the state of the global energy quires small analog modifications AW, in W,. Pixel trans-

minimum or one close to it. This requires that the injected mittance in the MOSLM is binary, however. Therefore a
noise intensity be reduced gradually, reaching zero when scheme for learning with binary weights was developed
the state of global energy minimum is reached to ensure and used in which W,, is made I if (P, - P')> M regardless,
that the net will stay in that state. Gradual reduction of of its preceeding value, where M is a constant, and made
noise intensity during this process is equivalent to reducing - 1 if (P, - P,,) < -M regardless of its preceeding value,
the "temperature" of the net and is analogous to the an- and is left unchanged if -M_>(P,,-P'j5)_M. This intro-
nealing of a crystal melt to arrive at a good crystalline struc- duces inertia to weights modification and was found to
ture. It has accordingly been called simulated annealing by allow a net of N = 24 neuron partitioned into 8-8-8 groups
early workers in the field. to learn two autoassociations with 95 percent score (prob-

Finding the global minimum of a "cost" or energy func- ability of correct recall) when the value of M was chosen
tion is a basic operation encountered in the solution of op- randomly between (0-.5) for each learning cycle. This score
timization problems and is found not only in stochastic dropped to 70 percent in learning three autoassociations.
learning. Mapping optimization problems into stochastic However, increasing the number of hidden neurons trom
nets of this type, combined with fast annealing to find the 8 to 16 was found to yield perfect learning (100 percent
state of global "cost function" minimum, could be a pow- score).
erful tool for their solution. The net behaves then as a sto- Scores were collected after 100 learning cycles by com-
chastic dynamical analog computer. In the case considered puting probabilities of correct recall of the training set. Fast
here, however, optimization through simulated annealing annealing by the noisy thresholding scheme was found to
is utilized to obtain and list the convergent states at the scale well with size of the net, establishing the viability of
end of annealing bursts when the training set of vectors constructing larger optoelectronic learning machines. In the
(the desired associations) are clamped to V, and V.. This following section two schemes for realizing large-scale nets
yields a table or listing of converge'it state vectors from are briefly described. One obvious approach discussed is
which a probability P,, of finding the i-th neuron and the j- the clustering of neural modules or chips. This approach
th neuron on at the same time is computed. This completes requires that neurons in different modules be able to corn-
the first phase of learning. The second phase of learning municate with each other in parallel, if fast simulated an-
involves clamping the V, neurons only and annealing the nealing by noisy thresholding is to be carried out. This
net through H and V., obtaining thereby another list of requirement appears to limit the number ot neurons p,'r
convergent state vectors at the end of annealing bursts and module to the number of interconnects that can be made
calculating another probability P', of finding the i-th and j- from it to other modules. This is a thorny issue in VLSI
th neurons on at the same time. The connectivity matrix, implementation of cascadeable neural chips (see Alspector
implemented in a programmable magneto-optic SLM and Allen in list of further reading). It provides a strong
(MOSLM), is modified then by AW., = f(P,, - P',,) computed argument in favor of optoelectronic neural modules that
by the computer controller where f is a constant controlling have no such limitation because communication between
the learning rate. This completes one learning cycle or ep- modules is carried out by optical means and not by wire.
isode. The above process is repeated again and again until
the W,, stabilizes and captures hopefully the underlying
structure of the training set. Many learning cycles are re-
quired and the learning process can be time-consuming Large Scale Networks
unless the annealing process is sufficiently fast.

We have found that the noisy thresholding scheme leads To date most optoelectronic implementations of neural
the net to anneal and find the global energy minimum or networks have been prototype units limited to few tens or
one close to it in about 35 time constants of the neurons hundreds of neurons. Use of neurocomputers in practical
used. For microsecond neurons this could be 101-1W times applications involving fast learning or solution of optimi-
faster than numerical simulation of stochastic learning by zation problems requires larger nets. An important issue,
simulated annealing which requires random selection of therefore, is how to construct larger nets with the pro-
neurons one at a time, switching their states, and accepting grammability and flexibility exhibited by the Boltzmann
the change of state in such a way that changes leading to learning machine prototype described. In this section we
an energy decrease are accepted and those leading to en- present two possible approaches to forming large-scale nets
ergy increases are allowed with a certain controlled prob- as examples demonstrating the viability of the photonic
ability. approach. One is based on the concept of a clusterable

The computer controller in Fig. 4 performs several func- integrated optoelectronic neural chip or module that can
tions. It clamps the input/output neurons to the desired be optically interconnected to form a larger net, and the
states during the two phases of learning, controls the an- second is an architecture in which 2-D arrangement of neu-
nealing profile dunng annealing bursts, monitors the con- rons is utilized, instead of the l-D arrangement described
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concept ot clusterable integrated optoelectronics or pho-
"' " NONLINEAR tonic neural chips. One is replacement ot the LEDs of the

REFLECTOR nonlinear reflector arrays by suitable spatial light modula-
ARRAY tors ot the fast terroelectrc liquid cr,.,tal varietY or vx-

."* ~ ample, and extending the elemeits of the nonlinear reflector
,..0 ,. arrays to form stripes that extend beyond the dimensions

"'of the connectivity SLNI, and sandwiching the latter be-

S'". tween two such striped nonlinear reflector arrays oriented
W orthogonally to each other as depicted in Fig. 5i c. Thiv

produces a photonic neural chip that operates in an am-
bient light environment. Analog integrated circuit [CJ

NONLINEAR technology would then be used to tabricate channels t
REFLECTOR (0) nonlinear (thresholding) amplifiers and SLM drivers, one
ARRAY

W: WMASK channel tor each PD element. The minute IC chip thus
tabrrcated is mounted as an integral part on each PDA. ILM
assembl of the nonlinear reflector arrays. Individual chan-

4 SUBROWS nels of the IC chip are bonded to the PDA and SLM cle-
- OF W11  ments. Two such analog IC chips are needed per neural

chip. The size ot the neural chip is determined by the num-
ber of pixels in the SLM used.

An example of four such neural chips connected optoe-
TK lectronicallv to form a larger net by clustering is shown in

LE'DO Fig. 5 d). This is achieved bv sirply aligning the end,, ot

,,LED the stripe PD elerments in one chip with the ends ot the
DRIVER ( b ) 'tripe SL%1 elements in the other. It is clear that the hy brid

photonic approach to torming the neural chip would ulti-
mately and preferably be replaced by an entirely integrated

- -, -photonic approach and that neural chips with the slight1%
-- , ' -. '.' SS ditferent form shown in Fig. 5(e) can be utilized to torm

clusters of more than four. Large-scale neural nets pro-
NRNRAA duced by clustering integrated photonic neural chips ha\ e

IV ,SLMA the advantage of enabling any partitioning arrangement,
alloving neurons in the partitioned net to communicatt,
with each other in the desired fashion enabling fast an-

(C) (d) (e) nealing by noisy thresholding to be carried out, and ot
being able to accept both optically injected signals (throuvh
the PDAs) or electronically in)ected signals (through the

Fig. 5 Oi'vt'lcectro ni Pieural Pie c phl Im tcr til tdlack a110 (410 SLMs) in the nonlinear reflector arrays, facilitating coni-
ortlioiio'al io miecar reoletor arrip (,N'RA.) conmjtltN, of cljiPiels of munication with the environment. Such nets are therefore
uoninear ht-ht apifiers Iilrop ¢ctdeicior,, ''hIS it k ath tfirs. LED4 capable of both deterministic or stochastic learning. Com-
a.td LED drtiz,-r), a) are itectiur, (ij, detati of ma-, oti t \.li c '.,'ilt puter controlled electronic partitioning and loading and up-
ot rionlihiear reflector arrav, fc) and (it optociectronic ncurai chil concept dating ot the connectivity weights in the connectivity S LN%
and chuster ot tour chips, ') neurn chip. r Porming clusters of lore than (which can be of the magneto-optic variety or the nonvol-
!our chips. atile ferroelectric liquid crystal (FeLCSLM) vanety) is as-

sumed. This approach to realizing large-scale fully
programmable neural nets is currently being developed in

in earlier sections, in order to increase pat:king densit., and our laboratory, and illustrates the potential role integrated
to provide compatibility with 2-D sensory data tormats. photonics could play in the design and construction it a

new generation of analog computers intended for use in

Clusterable Photonic Neural Chips neurocomputing and rapid simulation and study of nonlin-
ear dynamical systems.

Th e concept of a clusterable photonic neural chip, which
is being patented by the University of Pennsylvania, is ar- Neural Nets with Two-Dimensional Deploymert ot
nved at by noting that when the connectivity matrix is svm- Neurons
metncal, the architectures we described earlier (see Figs. 3
or 4(a)) can be modified to include internal optical feedback Neural net architectures in which neurons are arranged
and nonlinear "reflection" (optoelectronic detection, am- in a two-dimensional (2-D) format to increase packing den-
plification, thresholding and light emission or modulation) sitv and to facilitate handling 2-D formatted data have re-
on both sides of the connectivity mask W or nonvolatile ceived early attention (see Farhat and Psaltis (1987) in list
SLM (e.g., a MOSLM) as depicted in Fig. 5 (see Farhat of further reading). These arrangements involve a 2-D N
(1987) in list of further reading). The nonlinear reflector x N state "vector" or matnx s, representing the state of
arrays are basically retro-reflecting optoelectronic or pho- neurons, and a four-dimensional (4-D) connectivity "ma-
tonic light amplifier arrays that receive and retransmit light trix" or tensor T,.,, representing the weights of synapses
on the same side facing the MOSLM. between neurons. A scheme for partitioning the 4-D con-

Two further modifications are needed to arrive at the nectivity tensor into an N x N array of submatnces, each
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NONUNER FEEDBACK j the lenslet array instead of the optical crossbar arranvement
. .. ... .used to establish connectivitv between neurons when the,

.THRS ., '. .-. . . ' are aeploved on a line.

Both plastic molded and glass micro-lenslet arrays can
be fabricated today in 2-D formats. Glass micro-lenslet ar-
rays with densit,,y of 9 to 25 lenslets/mm can be made in
large areas using basically photolithographic techniques.
Resolution ot up to -;0 p/mm can also be achived.

- RRAPO Therefore, a micro lenslet array of (10 x 100)mm-, for ex-
ARRASY ample, containing easily 10 lenslets could be used to form

LEOADA YNAPTIC a net of 10' neurons provided that the required nonlinear
.TAT ~ LENSLT tT(T% MATriX

i-. YFAT -- ,Y -,OVtA P ARRAY) light amplifiers (photodetector/thresholding amplifier LED
CoPoso.• . ., .. or SLM driver arrav) become available. This is another in-

.(O, ) t- - stance where integrated optoelectronics technology can play
S' "-.. . .a central role. We have built a 8 x 8 neuron version ot the

'DA ".arrangement in Fig. 6(a) emploving a square LED array, a
square plastic lenslet array, and a square PDA, each ot
which has 8 x 8 eiements in which the state update wa,,s

If"- - ; *.--.' : ,( computed serially by a computer which sampled the aci-
. ~- vation potentials provided by the PDA and furnished the

CAMERA .drive signals to the LED array. The connectivitv weights in
this arrangement were stored in a photographic mask which

_m . ,- ," .as formed with the help of the system itself in the follow,-

INPUT I ing manner: Starting from a set of umpolar binary matrices
LEARN N o A "- SYNATIC MASK :, to be stored in the net, the required 4-D connectivit\
INITIALIZAT)ONmw, 0 PLAY

ffOR LENSLET tPWMTIOt0E . tensor was obtained bv computing the sum of the outer
ARRAY .. " MATRIX) products of the bipolar'binary versions v, = 2b,,- 1. The re-

BACKED BYARRAY b
, oF UGHT INTEGRATNG suiting connectivitv tensor was partitioned and unipolar

ELEMES(b) U s. binary quantized versions of its submatrices were dispia',ed
•. in order by the computer on the LED display and stored

. • ::', . F . -. .I. "- " at their appropriate locations in a photographic plate placed
', '..in the image plane of the lenslet array bv blocking all ele-

. - -,. . -- "ments of the lenslet array except the one where a particular
.,i I . submatrix was to be stored. This process was automated

-S -- with the aid of a computer controlled positioner scanning

' " "TT ".1; a pinhole mask in front of the lenslet array so that the
RCILANIZED S (I.,.-,D VW MATIX t ,m .,photographic plate is exposed to each submatrix of the con-
LASE K S DxJO B .RRYOFLGH nectivitv tensor displayed sequentially by the computer.

- ... ' • ...... .The photographic plate was then developed and positioned

back in place. Although time-consuming, this method or

Fe,. 6 Three optoelectrontc network architectures in which the neurons loading the connectivity matnx in the net has the advantage

ire arranged In tu,o-dimensional format employin (a) parallel nvinnear of compensating for all distortions and aberrations ot the

electronic amihfication and feedback, (b) serial nonlinear electro'c am- system.
pliftcation and teedback, (c parallel nonlinear electron opttca; ampification The procedure for loading the memory in the system can

and feedback. be speeded up considerably by using an array ot minute
electr3nically controlled optical shutters tswitches) to re-

of which has N x N elements, to enable storing it in a flat place the function of the mechanically scanned pinhole.
2-D photomask or SLM for use in optoelectronic imple- The shutter array is placed just in front or behind the lenslet
mentation has been developed (see Farhat and Psaltis 1987 array such that each element of the lenslet array has a corre-
in list of further reading). Several arrangements are possi- sponding shutter element in register with it. An electron-
ble using this partitioning scheme (see Fig. 6). ically addressed ferroelectric liquid crystal spatial liht

In Fig. 6(a), neuron states are represented with a 2-D LED modulator (FeLCSLM) (see Spatial Light Modulators and
array (or equivalently with a 2-D SLM). A two-dimensional Applications in list of further reading) is a suitable candi-
lenslet array is used to spatially multiplex and project the date for this task because of its fast switching speed (a tew
state vector display onto each of the submatrices of the microseconds). Development of FeLCSLMs is being pur-
partitioned connectivity mask. The product of the state ma- sued worldwide because of their speed, high contrast, and
trix with each of the weights stored in each submatrnx is bistabilitv which enables nonvolatile switching ot pixel
formed with the help of a spatially integrating square pho- transmission between two states. These features make
todetector of suitable size positioned behind each subma- FeLCSLMs also attractive for use as programmable con-
tnx. The (i-I)th photodetector output represents the activation nectivitv masks in learning networks such as the Boltz-
potentials u. of the (t-)th neurons. These activation poten- mann machine in place of the MOSLM presently in use.
tials are nonlinearlv amplified and fed back in parallel to Because the connectivity matnx was umpolar, an adap-
drive the corresponding elements of the LED state array of tive threshold equal to the mean or energy of the iterated
those ot the state SLM. In this fashion, weighted intercon- state vector was found to be required in computing the
nections between all neurons are established by means of update state to make the network function as an associative
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memory that performed in accordance with theoretical pre- associative storage and recall, self organization and adap-
dictions of storage capacity and for successful associative five learning (self-Frogramming), and fast solution of op-
seaich when sketchy (noisy and,or partial) inputs are pre- timization problems. Large-scale versions of these
sented. Recent evidence in our work is showing that ligistic neurocomputers are needed for tackling real world prob-
neurons, mentioned in a footnote earlier, allow using un- lems. Ultimatelv these can be realized using integrated op-
ipolar connectivity weights in a network without having Lo toelectronic (integrated photonic) technology rather than
resort to adaptive tnresholding. This behavior may be caused the hybrid optoelectronic approach presented here. Thus.,
by the possibility that logistic neurons, with their 'humped" new impetus is added for the development of integrated
nonsigmoidal response, combine at once features of exci- optoelectronics besides that coming from the needs of high
tatorv and inhibitory neurons which, from all presently speed optical communication. One can expect variations of
available evidence, is biologically not plausible. Biological integrated optoelectronic repeater chips utilizing GaAs on
plausibility, it can be argued, is desirable for guiding hard- silicon technology being developed with optical commu-
ware implementations of neural nets but is not absolutely nication in mind (see J. Shibata and T. Kajiwara in list or
necessary as long as departures from it facilitate and sim- further reading). These, when fabricated in dense array
plify implementations without sacrificing function and flex- form, will find widespread use in the construction or large-
ibilitv. scale analog neurocomputers. This class of neurocomputers

Several vanations of the above basic 2-D architecture were will probably also find use in the study and fast simulation
studied. One, shown in Fig. 6(b) employs an array of light of nonlinear dynamical systems and chaos and its role in a
integrating elements (lenslet array plus diffusers, for eN- variety of systems.
ample) and a CCD camera plus serial nonlinear amplifica- Biological neural nets were evolved in nature for one
tion and driving to display the updated state matrix on a ultimate purpose: that of maintaining and enhancing sur-
djPlav monitor. In Fig. h(c) a microchannel spatial light vivabilitv of the organism they reside in. Embedding arti-
modulator (MCSLM) Is employed as an electron-optical ar- ticial neural nets in man-made systems, and in particular
rav or thresholding amplifiers and to simultaneousiv dis- autonomous systems, can serve to enhance their survva-
play the updated state vector in coherent laser light as input bilitv and therefore reliability. Survivability is also a central
to the system. The spatial coherence of the state vector issue in a variety of systems with complex behavior en-
display in this case also enables replacing the lenslet array countered in bialogy, economics, social studies, and mili-
with a fine 2-D grating to spatially multiplex the displayed tarv science. One can therefore expect neuromorphic
image onto the connectivity photomask. Our studies show r , 'si'ng ,nd neurocomputers to play an important role
that the 2-D architectures described are well suited fe :- ie modeling and study of such complex systems es-
plementing large networks with semi-global (o.ai rather pecially it integrated optoelectronic techniques can be made
than global interconnects between neur 3 ,s, with each neu- to extend the flexibility and speed demonstrated in the pro-
ron capable of communicating with i , to few thousand totype nets described to large scale networks. One should
neurons in its vicinity depending on lenslet resojulu: -c also expect that software development tor emulating neural
geometry. Adaptive learning in these architectures is also tunctions on serial and parallel digital machines will not
possible provided a suitable erasable s-torage medium is continue to be confined, as at present, to the realm of
found to replace the photographic mask. For example in straightforward simulation, but spurred by the mounting
vet another conceivable variant of the above architectures, interest in neural processing, will move into the algorithmic
the lenslet array can be used to spatially demultiplex the domain where fast efficient alioriths are likely to be de-
connectivitv submatrices presented in a suitable Z-D eras- veloped, especially for parallel machines, becoming to neural
able display, i.e. project them in perfect register, onto a processing what the FFT (fast Fourier transform) was to the
single SLM device containing the state vector data. This discrete Fourier transform. Thus we expect that ad%,, .

enables torming the activation potential array u directly in neuromorphic analog and digital signal processing will
and facilitates carrying out the required neron response proceed in parallel and that applications would draw on
operations (nonlinear gain) optically and in parallel through both equallY.
appropriate choice of the state vector SLM and the archi-
tecture. Varations employing internal feedback, as in 1-D
neural nets, can also be conceived. Acknowledgement
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